Wyatt G Madden, Wei Jin, Benjamin Lopman, Andreas Zufle, Benjamin Dalziel, C Jessica E Metcalf, Bryan T Grenfell, Max S Y Lau
{"title":"Deep neural networks for endemic measles dynamics: Comparative analysis and integration with mechanistic models.","authors":"Wyatt G Madden, Wei Jin, Benjamin Lopman, Andreas Zufle, Benjamin Dalziel, C Jessica E Metcalf, Bryan T Grenfell, Max S Y Lau","doi":"10.1371/journal.pcbi.1012616","DOIUrl":null,"url":null,"abstract":"<p><p>Measles is an important infectious disease system both for its burden on public health and as an opportunity for studying nonlinear spatio-temporal disease dynamics. Traditional mechanistic models often struggle to fully capture the complex nonlinear spatio-temporal dynamics inherent in measles outbreaks. In this paper, we first develop a high-dimensional feed-forward neural network model with spatial features (SFNN) to forecast endemic measles outbreaks and systematically compare its predictive power with that of a classical mechanistic model (TSIR). We illustrate the utility of our model using England and Wales measles data from 1944-1965. These data present multiple modeling challenges due to the interplay between metapopulations, seasonal trends, and nonlinear dynamics related to demographic changes. Our results show that while the TSIR model yields similarly performant short-term (1 to 2 biweeks ahead) forecasts for highly populous cities, our neural network model (SFNN) consistently achieves lower root mean squared error (RMSE) across other forecasting windows. Furthermore, we show that our spatial-feature neural network model, without imposing mechanistic assumptions a priori, can uncover gravity-model-like spatial hierarchy of measles spread in which major cities play an important role in driving regional outbreaks. We then turn our attention to integrative approaches that combine mechanistic and machine learning models. Specifically, we investigate how the TSIR can be utilized to improve a state-of-the-art approach known as Physics-Informed-Neural-Networks (PINN) which explicitly combines compartmental models and neural networks. Our results show that the TSIR can facilitate the reconstruction of latent susceptible dynamics, thereby enhancing both forecasts in terms of mean absolute error (MAE) and parameter inference of measles dynamics within the PINN. In summary, our results show that appropriately designed neural network-based models can outperform traditional mechanistic models for short to long-term forecasts, while simultaneously providing mechanistic interpretability. Our work also provides valuable insights into more effectively integrating machine learning models with mechanistic models to enhance public health responses to measles and similar infectious disease systems.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012616"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012616","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Measles is an important infectious disease system both for its burden on public health and as an opportunity for studying nonlinear spatio-temporal disease dynamics. Traditional mechanistic models often struggle to fully capture the complex nonlinear spatio-temporal dynamics inherent in measles outbreaks. In this paper, we first develop a high-dimensional feed-forward neural network model with spatial features (SFNN) to forecast endemic measles outbreaks and systematically compare its predictive power with that of a classical mechanistic model (TSIR). We illustrate the utility of our model using England and Wales measles data from 1944-1965. These data present multiple modeling challenges due to the interplay between metapopulations, seasonal trends, and nonlinear dynamics related to demographic changes. Our results show that while the TSIR model yields similarly performant short-term (1 to 2 biweeks ahead) forecasts for highly populous cities, our neural network model (SFNN) consistently achieves lower root mean squared error (RMSE) across other forecasting windows. Furthermore, we show that our spatial-feature neural network model, without imposing mechanistic assumptions a priori, can uncover gravity-model-like spatial hierarchy of measles spread in which major cities play an important role in driving regional outbreaks. We then turn our attention to integrative approaches that combine mechanistic and machine learning models. Specifically, we investigate how the TSIR can be utilized to improve a state-of-the-art approach known as Physics-Informed-Neural-Networks (PINN) which explicitly combines compartmental models and neural networks. Our results show that the TSIR can facilitate the reconstruction of latent susceptible dynamics, thereby enhancing both forecasts in terms of mean absolute error (MAE) and parameter inference of measles dynamics within the PINN. In summary, our results show that appropriately designed neural network-based models can outperform traditional mechanistic models for short to long-term forecasts, while simultaneously providing mechanistic interpretability. Our work also provides valuable insights into more effectively integrating machine learning models with mechanistic models to enhance public health responses to measles and similar infectious disease systems.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.