Fan Yi, Zhao Jianchao, Zhu Wen, Liu Ke, Lou Yantao
{"title":"Effect of foot strike patterns and angles on the biomechanics of side-step cutting.","authors":"Fan Yi, Zhao Jianchao, Zhu Wen, Liu Ke, Lou Yantao","doi":"10.3389/fbioe.2024.1461247","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The study aimed to determine how foot strike patterns and cutting angles affect lower extremity (LE) kinematics, kinetics, and muscle activity during side-step cutting.</p><p><strong>Methods: </strong>Twenty male college sport athletes participated in this research. Three-dimensional motion analysis featuring ground reaction force (GRF) and electromyography (EMG) of the dominant leg was used. LE kinematics, kinetics, and EMG data parameters were obtained during a 45° and 90° side-step cutting involving rearfoot strikes (RFS) and forefoot strikes (FFS).</p><p><strong>Results: </strong>The significant foot strike pattern × angle interactions were observed for the ankle eversion range of motion (ROM) at the loading phase. Cutting of 90° had greater knee flexion ROM, knee valgus ROM, and knee varus moment compared to that of 45°. RFS cutting had greater knee flexion, hip flexion, knee valgus, knee varus moment, knee varus moment, and ankle eversion ROM. FFS cutting produced a lower vertical GRF, lateral GRF, and a loading rate. Both vastus medialis and vastus lateralis muscle activities were remarkably greater during cutting of 90° than 45°. At the loading phase, semitendinosus, biceps femoris, and the lateral head of gastrocnemius muscle activities during FFS cutting were considerably greater than those during RFS cutting.</p><p><strong>Conclusion: </strong>The FFS pattern can better protect the anterior cruciate ligament (ACL) and improve the flexibility of athletes by increasing the plantarflexion torque of the ankle. The injury risk also increases with the larger cutting angle. The EMG activities of semitendinosus and biceps femoris are vital for the stability of knee joint during side-step cutting, which helps reduce ACL stress during buffering.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1461247"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1461247","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The study aimed to determine how foot strike patterns and cutting angles affect lower extremity (LE) kinematics, kinetics, and muscle activity during side-step cutting.
Methods: Twenty male college sport athletes participated in this research. Three-dimensional motion analysis featuring ground reaction force (GRF) and electromyography (EMG) of the dominant leg was used. LE kinematics, kinetics, and EMG data parameters were obtained during a 45° and 90° side-step cutting involving rearfoot strikes (RFS) and forefoot strikes (FFS).
Results: The significant foot strike pattern × angle interactions were observed for the ankle eversion range of motion (ROM) at the loading phase. Cutting of 90° had greater knee flexion ROM, knee valgus ROM, and knee varus moment compared to that of 45°. RFS cutting had greater knee flexion, hip flexion, knee valgus, knee varus moment, knee varus moment, and ankle eversion ROM. FFS cutting produced a lower vertical GRF, lateral GRF, and a loading rate. Both vastus medialis and vastus lateralis muscle activities were remarkably greater during cutting of 90° than 45°. At the loading phase, semitendinosus, biceps femoris, and the lateral head of gastrocnemius muscle activities during FFS cutting were considerably greater than those during RFS cutting.
Conclusion: The FFS pattern can better protect the anterior cruciate ligament (ACL) and improve the flexibility of athletes by increasing the plantarflexion torque of the ankle. The injury risk also increases with the larger cutting angle. The EMG activities of semitendinosus and biceps femoris are vital for the stability of knee joint during side-step cutting, which helps reduce ACL stress during buffering.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.