Wedge-Like Microstructure of Al2O3/i-Ti3C2Tx Electrode with "Nano-Pumping" Effect for Boosting Ion Diffusion and Electrochemical Defluoridation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junce Wang, Jinfeng Chen, Ningning Liu, Jingjing Lei, Hong-Wen Gao, Fei Yu, Fanghui Pan, Jie Ma
{"title":"Wedge-Like Microstructure of Al<sub>2</sub>O<sub>3</sub>/i-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> Electrode with \"Nano-Pumping\" Effect for Boosting Ion Diffusion and Electrochemical Defluoridation.","authors":"Junce Wang, Jinfeng Chen, Ningning Liu, Jingjing Lei, Hong-Wen Gao, Fei Yu, Fanghui Pan, Jie Ma","doi":"10.1002/advs.202411659","DOIUrl":null,"url":null,"abstract":"<p><p>Controlled synthesis and regulation of 2D nanomaterials with sufficient active sites are promising in electrochemical fluorine capture, but simultaneously achieving rapid rates and efficient activity of intercalation materials remains challengs. Herein, an integrated strategy of micro-regulation interlayer space and in situ modification of MXenes is proposed to enhance ion storage kinetics. The wedge-like microstructure of aluminum oxide/incomplete-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Al<sub>2</sub>O<sub>3</sub>/i-Ti<sub>3</sub>C<sub>2</sub> T<sub>x</sub>) is constructed by incomplete etching MAX and in situ derivation of A-layer element, in which the sub-nanoscale interlayer space is conducive to the small size ions intercalation, and the formation of \"nanopump-like\" effect boosted the ions diffusion. As evidenced by simulation calculations, Al<sub>2</sub>O<sub>3</sub> nanoparticles not only shorten the migration distance of electrons/hydrated ions in interlayers but also contribute a lower adsorption energy barrier, bringing excellent capture kinetics and stability. Benefiting from the interfacial conversion-intercalation pseudocapacitance, such electrode is endowed with a high defluoridation capacity (69.9 mg g<sup>-1</sup> at 1.6V) and an outstanding instantaneous adsorption rate (9.51 mg g<sup>-1</sup> min<sup>-1</sup>), and shows satisfactory stability in more than 200 cycles. The physicochemical coupling strategy opens a novel approach to optimizing the interlayer structure and in situ modification interface of MXene, which also provids a universal idea for efficient capture of varisized ions of intercalation materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411659"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411659","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlled synthesis and regulation of 2D nanomaterials with sufficient active sites are promising in electrochemical fluorine capture, but simultaneously achieving rapid rates and efficient activity of intercalation materials remains challengs. Herein, an integrated strategy of micro-regulation interlayer space and in situ modification of MXenes is proposed to enhance ion storage kinetics. The wedge-like microstructure of aluminum oxide/incomplete-Ti3C2Tx MXene (Al2O3/i-Ti3C2 Tx) is constructed by incomplete etching MAX and in situ derivation of A-layer element, in which the sub-nanoscale interlayer space is conducive to the small size ions intercalation, and the formation of "nanopump-like" effect boosted the ions diffusion. As evidenced by simulation calculations, Al2O3 nanoparticles not only shorten the migration distance of electrons/hydrated ions in interlayers but also contribute a lower adsorption energy barrier, bringing excellent capture kinetics and stability. Benefiting from the interfacial conversion-intercalation pseudocapacitance, such electrode is endowed with a high defluoridation capacity (69.9 mg g-1 at 1.6V) and an outstanding instantaneous adsorption rate (9.51 mg g-1 min-1), and shows satisfactory stability in more than 200 cycles. The physicochemical coupling strategy opens a novel approach to optimizing the interlayer structure and in situ modification interface of MXene, which also provids a universal idea for efficient capture of varisized ions of intercalation materials.

具有 "纳米泵 "效应的 Al2O3/i-Ti3C2Tx 电极楔形微结构可促进离子扩散和电化学脱氟作用
具有足够活性位点的二维纳米材料的可控合成和调控在电化学氟捕获中大有可为,但同时实现插层材料的快速速率和高效活性仍是一项挑战。本文提出了一种微调节层间空间和原位改性 MXenes 的综合策略,以增强离子存储动力学。通过不完全刻蚀 MAX 和原位衍生 A 层元素,构建了氧化铝/不完全 Ti3C2Tx MXene(Al2O3/i-Ti3C2 Tx)的楔形微结构,其中亚纳米尺度的层间空间有利于小尺寸离子插层,形成的 "纳米泵 "效应促进了离子的扩散。模拟计算结果表明,Al2O3 纳米粒子不仅缩短了电子/水合离子在层间的迁移距离,还有助于降低吸附能垒,带来优异的捕获动力学和稳定性。得益于界面转换-叠加假电容,这种电极具有很高的脱氟容量(1.6V 时为 69.9 mg g-1)和出色的瞬时吸附率(9.51 mg g-1 min-1),并在 200 多个循环中表现出令人满意的稳定性。物理化学耦合策略为优化 MXene 的层间结构和原位修饰界面开辟了一条新途径,也为高效捕获插层材料中的各种离子提供了一种通用思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信