Visualizing fiber end geometry effects on stress distribution in composites using mechanophores.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-11-22 DOI:10.1039/d4sm00967c
Nazmul Haque, Hao Chun Chang, Chia-Chih Chang, Chelsea S Davis
{"title":"Visualizing fiber end geometry effects on stress distribution in composites using mechanophores.","authors":"Nazmul Haque, Hao Chun Chang, Chia-Chih Chang, Chelsea S Davis","doi":"10.1039/d4sm00967c","DOIUrl":null,"url":null,"abstract":"<p><p>Localized stress concentrations at fiber ends in short fiber-reinforced polymer composites (SFRCs) significantly affect their mechanical properties. Our research targets these stress concentrations by embedding nitro-spiropyran (SPN) mechanophores into the polymer matrix. SPN mechanophores change color under mechanical stress, allowing us to visualize and quantify stress distributions at the fiber ends. We utilize glass fibers as the reinforcing material and employ confocal fluorescence microscopy to detect color changes in the SPN mechanophores, providing real-time insights into the stress distribution. By combining this mechanophore-based stress sensing with finite element analysis (FEA), we evaluate localized stresses that develop during a single fiber pull-out test near different fiber end geometries-flat, cone, round, and sharp. This method precisely quantifies stress distributions for each fiber end geometry. The mechanophore activation intensity varies with fiber end geometry and pull-out displacement. Our results indicate that round fiber ends exhibit more gradual stress transfer into the matrix, promoting effective stress distribution. Also, different fiber end geometries lead to distinct failure mechanisms. These findings demonstrate that fiber end geometry plays a crucial role in stress distribution management, critical for optimizing composite design and enhancing the reliability of SFRCs in practical applications. By integrating mechanophores for real-time stress visualization, we can accurately map quantified stress distributions that arise during loading and identify failure mechanisms in polymer composites, offering a comprehensive approach to enhancing their durability and performance.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm00967c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Localized stress concentrations at fiber ends in short fiber-reinforced polymer composites (SFRCs) significantly affect their mechanical properties. Our research targets these stress concentrations by embedding nitro-spiropyran (SPN) mechanophores into the polymer matrix. SPN mechanophores change color under mechanical stress, allowing us to visualize and quantify stress distributions at the fiber ends. We utilize glass fibers as the reinforcing material and employ confocal fluorescence microscopy to detect color changes in the SPN mechanophores, providing real-time insights into the stress distribution. By combining this mechanophore-based stress sensing with finite element analysis (FEA), we evaluate localized stresses that develop during a single fiber pull-out test near different fiber end geometries-flat, cone, round, and sharp. This method precisely quantifies stress distributions for each fiber end geometry. The mechanophore activation intensity varies with fiber end geometry and pull-out displacement. Our results indicate that round fiber ends exhibit more gradual stress transfer into the matrix, promoting effective stress distribution. Also, different fiber end geometries lead to distinct failure mechanisms. These findings demonstrate that fiber end geometry plays a crucial role in stress distribution management, critical for optimizing composite design and enhancing the reliability of SFRCs in practical applications. By integrating mechanophores for real-time stress visualization, we can accurately map quantified stress distributions that arise during loading and identify failure mechanisms in polymer composites, offering a comprehensive approach to enhancing their durability and performance.

利用力学透镜观察纤维端部几何形状对复合材料应力分布的影响。
短纤维增强聚合物复合材料(SFRC)纤维末端的局部应力集中会严重影响其机械性能。我们的研究通过在聚合物基体中嵌入硝基-巯基吡喃(SPN)机械分子,瞄准了这些应力集中点。在机械应力作用下,SPN 机械分子会变色,从而使我们能够观察和量化纤维末端的应力分布。我们利用玻璃纤维作为增强材料,并采用共焦荧光显微镜检测 SPN 机械分子的颜色变化,从而实时了解应力分布情况。通过将这种基于机械分子的应力传感与有限元分析(FEA)相结合,我们评估了在单根纤维拉出测试过程中,不同纤维端部几何形状(扁平、锥形、圆形和尖锐)附近产生的局部应力。这种方法可精确量化每种纤维端部几何形状的应力分布。机械孔激活强度随纤维端几何形状和拉出位移而变化。我们的研究结果表明,圆形纤维端表现出更渐进的应力传递到基体中,从而促进了有效的应力分布。此外,不同的纤维端几何形状会导致不同的破坏机制。这些研究结果表明,纤维末端的几何形状在应力分布管理中起着至关重要的作用,对于优化复合材料设计和提高 SFRC 在实际应用中的可靠性至关重要。通过集成机械探针进行实时应力可视化,我们可以准确绘制加载过程中产生的量化应力分布图,并识别聚合物复合材料的失效机制,为提高其耐久性和性能提供全面的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信