Similarity between oxygen evolution in photosystem II and oxygen reduction in cytochrome c oxidase via proton coupled electron transfers. A unified view of the oxygenic life from four electron oxidation-reduction reactions.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kizashi Yamaguchi, Koichi Miyagawa, Mitsuo Shoji, Hiroshi Isobe, Takashi Kawakami
{"title":"Similarity between oxygen evolution in photosystem II and oxygen reduction in cytochrome c oxidase via proton coupled electron transfers. A unified view of the oxygenic life from four electron oxidation-reduction reactions.","authors":"Kizashi Yamaguchi, Koichi Miyagawa, Mitsuo Shoji, Hiroshi Isobe, Takashi Kawakami","doi":"10.1007/s43630-024-00648-w","DOIUrl":null,"url":null,"abstract":"<p><p>Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described systematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T<sub>0</sub>) computations are performed to elucidate electronic and spin states of CaMn<sub>4</sub>O<sub>x</sub> cluster in the key step for oxygen evolution, namely S<sub>4</sub> [S<sub>3</sub> with Mn(IV) = O + Tyr161-O radical] state of PSII and P<sub>M</sub> [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMn<sub>4</sub>O<sub>x</sub> cluster in PSII and the cycle of oxygen reduction catalyzed by the Cu<sub>A</sub>-Fe<sub>a</sub>-Fe<sub>a3</sub>-Cu<sub>B</sub> cluster in CcO are examined on the theoretical grounds, elucidating similar concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in PSII and four-electron reduction in CcO. Interplay between theory and experiments have revealed that three electrons in the metal sites and one electron in tyrosine radical site are characteristic for PT-ET in these biological redox reaction systems, indicating no necessity of harmful Mn(V) = O and Fe(V) = O bonds with strong oxyl-radical character. Implications of the computational results are discussed in relation to design of artificial systems consisted of earth abundant transition metals for water oxidation.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00648-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described systematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T0) computations are performed to elucidate electronic and spin states of CaMn4Ox cluster in the key step for oxygen evolution, namely S4 [S3 with Mn(IV) = O + Tyr161-O radical] state of PSII and PM [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMn4Ox cluster in PSII and the cycle of oxygen reduction catalyzed by the CuA-Fea-Fea3-CuB cluster in CcO are examined on the theoretical grounds, elucidating similar concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in PSII and four-electron reduction in CcO. Interplay between theory and experiments have revealed that three electrons in the metal sites and one electron in tyrosine radical site are characteristic for PT-ET in these biological redox reaction systems, indicating no necessity of harmful Mn(V) = O and Fe(V) = O bonds with strong oxyl-radical character. Implications of the computational results are discussed in relation to design of artificial systems consisted of earth abundant transition metals for water oxidation.

光合系统 II 中的氧进化与细胞色素 c 氧化酶中通过质子耦合电子转移进行的氧还原之间的相似性。从四个电子氧化还原反应统一看待含氧生命。
系统阐述了用于强相关电子系统(SCES)(如电子转移(ET)二叉、具有自旋挫折的多中心多自由基)的破对称(BS)和后 BS 方法的基本概念和理论基础,以阐明金属酶:光系统 II(PSII)和细胞色素 c 氧化酶(CcO)中高价过渡金属氧键的结构、成键和反应性。通过 BS 混合 DFT (HDFT) 和 DLPNO 耦合簇 (CC) SD(T0) 计算,阐明了 CaMn4Ox 簇在氧进化关键步骤中的电子和自旋状态,即 PSII 的 S4 [S3 with Mn(IV) = O + Tyr161-O radical] 状态和 CcO 中氧还原的 PM [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] 步骤。从理论上研究了 PSII 中 CaMn4Ox 团簇催化的水氧化循环和 CcO 中 CuA-Fea-Fea3-CuB 团簇催化的氧还原循环,阐明了 PSII 中四电子氧化和 CcO 中四电子还原的类似协同和/或分步质子转移耦合电子传递(PT-ET)过程。理论与实验之间的相互作用表明,在这些生物氧化还原反应体系中,金属位点上的三个电子和酪氨酸自由基位点上的一个电子是 PT-ET 的特征,这表明不需要有害的 Mn(V) = O 和 Fe(V) = O 键,它们具有很强的氧自由基特征。我们讨论了计算结果对设计由地球上丰富的过渡金属组成的人工水氧化系统的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信