Stella P Petrova, Zhaoxi Zheng, Daniel Alves Heinze, Valerie Vaissier Welborn, Michael J Bortner, Klaus Schmidt-Rohr, Kevin J Edgar
{"title":"Gelation during Ring-Opening Reactions of Cellulosics with Cyclic Anhydrides: Phenomena and Mechanisms.","authors":"Stella P Petrova, Zhaoxi Zheng, Daniel Alves Heinze, Valerie Vaissier Welborn, Michael J Bortner, Klaus Schmidt-Rohr, Kevin J Edgar","doi":"10.1021/acs.biomac.4c01081","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose esters are used in Food and Drug Administration-approved oral formulations, including in amorphous solid dispersions (ASDs). Some bear substituents with terminal carboxyl moieties (e.g., hydroxypropyl methyl cellulose acetate succinate (HPMCAS)); these ω-carboxy ester substituents enhance interactions with drug molecules in solid and solution phases and enable pH-responsive drug release. However, the synthesis of carboxyl-pendent cellulose esters is challenging, partly due to competing reactions between introduced carboxyl groups and residual hydroxyls on different chains, forming either physically or covalently cross-linked systems. As we explored ring-opening reactions of cyclic anhydrides with cellulose and its esters to prepare polymers designed for high ASD performance, we became concerned upon encountering gelation. Herein, we probe the complexity of such ring-opening reactions in detail, for the first time, utilizing rheometry and solid-state <sup>13</sup>C NMR spectroscopy. Gelation in these ring-opening reactions was caused predominantly by physical interactions, progressing in some cases to covalent cross-links over time.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7777-7787"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01081","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose esters are used in Food and Drug Administration-approved oral formulations, including in amorphous solid dispersions (ASDs). Some bear substituents with terminal carboxyl moieties (e.g., hydroxypropyl methyl cellulose acetate succinate (HPMCAS)); these ω-carboxy ester substituents enhance interactions with drug molecules in solid and solution phases and enable pH-responsive drug release. However, the synthesis of carboxyl-pendent cellulose esters is challenging, partly due to competing reactions between introduced carboxyl groups and residual hydroxyls on different chains, forming either physically or covalently cross-linked systems. As we explored ring-opening reactions of cyclic anhydrides with cellulose and its esters to prepare polymers designed for high ASD performance, we became concerned upon encountering gelation. Herein, we probe the complexity of such ring-opening reactions in detail, for the first time, utilizing rheometry and solid-state 13C NMR spectroscopy. Gelation in these ring-opening reactions was caused predominantly by physical interactions, progressing in some cases to covalent cross-links over time.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.