Bryan Thompson, Kamolphat Atsawawaranunt, Melissa C Nehmens, William S Pearman, E Owen Perkins, Pavel Pipek, Lee A Rollins, Hui Zhen Tan, Annabel Whibley, Anna W Santure, Katarina C Stuart
{"title":"Population Genetics and Invasion History of the European Starling Across Aotearoa New Zealand.","authors":"Bryan Thompson, Kamolphat Atsawawaranunt, Melissa C Nehmens, William S Pearman, E Owen Perkins, Pavel Pipek, Lee A Rollins, Hui Zhen Tan, Annabel Whibley, Anna W Santure, Katarina C Stuart","doi":"10.1111/mec.17579","DOIUrl":null,"url":null,"abstract":"<p><p>The expansion of human settlements over the past few centuries is responsible for an unprecedented number of invasive species introductions globally. An important component of biological invasion management is understanding how introduction history and postintroduction processes have jointly shaped present-day distributions and patterns of population structure, diversity and adaptation. One example of a successful invader is the European starling (Sturnus vulgaris), which was intentionally introduced to numerous countries in the 19th century, including Aotearoa New Zealand, where it has become firmly established. We used reduced representation sequencing to characterise the genetic population structure of the European starling in New Zealand, comparing it to that present in sampling locations in the native range and invasive Australian range. The population structure and genetic diversity patterns we found suggested restricted gene flow from the majority of New Zealand to the northmost sampling location (Auckland). We also profiled genetic bottlenecks and shared outlier genomic regions, which supported historical accounts of translocations between both Australian subpopulations and New Zealand, and provided evidence of which documented translocation events were more likely to have been successful. Using these results as well as historic demographic patterns, we demonstrate how genomic analysis complements even well-documented invasion histories to better understand invasion processes, with direct implications for understanding contemporary gene flow and informing invasion management.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17579"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17579","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The expansion of human settlements over the past few centuries is responsible for an unprecedented number of invasive species introductions globally. An important component of biological invasion management is understanding how introduction history and postintroduction processes have jointly shaped present-day distributions and patterns of population structure, diversity and adaptation. One example of a successful invader is the European starling (Sturnus vulgaris), which was intentionally introduced to numerous countries in the 19th century, including Aotearoa New Zealand, where it has become firmly established. We used reduced representation sequencing to characterise the genetic population structure of the European starling in New Zealand, comparing it to that present in sampling locations in the native range and invasive Australian range. The population structure and genetic diversity patterns we found suggested restricted gene flow from the majority of New Zealand to the northmost sampling location (Auckland). We also profiled genetic bottlenecks and shared outlier genomic regions, which supported historical accounts of translocations between both Australian subpopulations and New Zealand, and provided evidence of which documented translocation events were more likely to have been successful. Using these results as well as historic demographic patterns, we demonstrate how genomic analysis complements even well-documented invasion histories to better understand invasion processes, with direct implications for understanding contemporary gene flow and informing invasion management.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms