{"title":"The Multifaceted Role of Gut Microbiota in Sea Urchin Digestion: Diversity, Function, Symbiosis, and Carbohydrate Degradation","authors":"Yining Zheng, Furong Wang, Yu Jiang, Yu Zhang, Xin Wang, Lianshun Wang, Li Wang, Yuan Wang, Yanan Lu, Yuting Cong, Guojun Yang","doi":"10.1155/2024/7363987","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Sea urchins, ecologically important marine species, host a complex gut microbiota that plays a significant role in their digestion, nutrient acquisition, and overall health. The gut microbes, along with endogenous enzymes, facilitate the breakdown of macroalgae and other food sources. Environmental factors, including temperature, salinity, and habitat type, can greatly influence the microbial communities within sea urchins. Dietary variations can also lead to shifts in the abundance and composition of intestinal bacteria, highlighting the strong connection between diet and gut microbiota. The sea urchin’s unique anatomy and digestive system adaptations contribute to their ability to process and absorb nutrients efficiently, supporting their varied diets. Gut microbes not only participate in the decomposition of complex carbohydrates, but also in detoxifying compounds and mitigating the impacts of inhospitable environments. Further research is needed to fully understand the intricate relationships between sea urchin species, their habitats, diets, and gut microbiota composition. A deeper understanding of these interactions may inform sustainable management and aquaculture strategies, ensure the long-term viability of economically valuable sea urchin species, and provide insights into their ecological roles and adaptability to changing environments.</p>\n </div>","PeriodicalId":8104,"journal":{"name":"Aquaculture Research","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7363987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7363987","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Sea urchins, ecologically important marine species, host a complex gut microbiota that plays a significant role in their digestion, nutrient acquisition, and overall health. The gut microbes, along with endogenous enzymes, facilitate the breakdown of macroalgae and other food sources. Environmental factors, including temperature, salinity, and habitat type, can greatly influence the microbial communities within sea urchins. Dietary variations can also lead to shifts in the abundance and composition of intestinal bacteria, highlighting the strong connection between diet and gut microbiota. The sea urchin’s unique anatomy and digestive system adaptations contribute to their ability to process and absorb nutrients efficiently, supporting their varied diets. Gut microbes not only participate in the decomposition of complex carbohydrates, but also in detoxifying compounds and mitigating the impacts of inhospitable environments. Further research is needed to fully understand the intricate relationships between sea urchin species, their habitats, diets, and gut microbiota composition. A deeper understanding of these interactions may inform sustainable management and aquaculture strategies, ensure the long-term viability of economically valuable sea urchin species, and provide insights into their ecological roles and adaptability to changing environments.
期刊介绍:
International in perspective, Aquaculture Research is published 12 times a year and specifically addresses research and reference needs of all working and studying within the many varied areas of aquaculture. The Journal regularly publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. It covers all aquatic organisms, floristic and faunistic, related directly or indirectly to human consumption. The journal also includes review articles, short communications and technical papers. Young scientists are particularly encouraged to submit short communications based on their own research.