Sambhaji S. Ghadge, Shubham R. Bankar and Vrushali H. Jadhav*,
{"title":"Selective Oxidation of Biomass derived 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) over Spent Dry cell battery cathode material (BCM-2)","authors":"Sambhaji S. Ghadge, Shubham R. Bankar and Vrushali H. Jadhav*, ","doi":"10.1021/acsaenm.4c0053710.1021/acsaenm.4c00537","DOIUrl":null,"url":null,"abstract":"<p >Widespread use of batteries across the globe generates a huge amount of waste. This work is the first to report spent dry cell (Zn-Carbon) battery cathode material (BCM-2) as a heterogeneous catalyst for selective synthesis of fine chemical 2,5-diformylfuran (DFF). Cathode material was easily separated from spent batteries, and acid leached followed by calcination to obtain black powder that was denoted as BCM-2. The catalyst was characterized using various techniques such as P-XRD, EDAX, SEM, HR-TEM, TGA, XPS, and BET analysis. Superior catalytic activity was shown by the catalyst for selective formation of DFF using molecular O<sub>2</sub> as a sole oxidant. The catalyst was found to give excellent HMF conversion of 97% with 98% high selectivity of DFF. The BCM-2 catalyst was easily recycled and reused without any significant loss in its catalytic activity. This is one of the best examples for a sustainable, cost-effective, and highly efficient catalytic system for the synthesis of the value-added chemical DFF.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"2 11","pages":"2651–2659 2651–2659"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Widespread use of batteries across the globe generates a huge amount of waste. This work is the first to report spent dry cell (Zn-Carbon) battery cathode material (BCM-2) as a heterogeneous catalyst for selective synthesis of fine chemical 2,5-diformylfuran (DFF). Cathode material was easily separated from spent batteries, and acid leached followed by calcination to obtain black powder that was denoted as BCM-2. The catalyst was characterized using various techniques such as P-XRD, EDAX, SEM, HR-TEM, TGA, XPS, and BET analysis. Superior catalytic activity was shown by the catalyst for selective formation of DFF using molecular O2 as a sole oxidant. The catalyst was found to give excellent HMF conversion of 97% with 98% high selectivity of DFF. The BCM-2 catalyst was easily recycled and reused without any significant loss in its catalytic activity. This is one of the best examples for a sustainable, cost-effective, and highly efficient catalytic system for the synthesis of the value-added chemical DFF.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.