High-voltage Symmetric Supercapacitors Developed by Engineering DyFeO3 Electrodes and Aqueous Electrolytes

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mohasin Tarek, Ferdous Yasmeen, Mohammed Abdul Basith
{"title":"High-voltage Symmetric Supercapacitors Developed by Engineering DyFeO3 Electrodes and Aqueous Electrolytes","authors":"Mohasin Tarek, Ferdous Yasmeen, Mohammed Abdul Basith","doi":"10.1039/d4ta06769j","DOIUrl":null,"url":null,"abstract":"Aqueous supercapacitors (SCs) are often constrained by low operational voltage and energy density due to the low decomposition voltage of water. In this work, we address these limitations by fabricating symmetric SCs using nanoporous Dysprosium Orthoferrite (DyFeO<small><sub>3</sub></small>) electrodes in dilute, neutral aqueous electrolytes. The nanoporous architecture of the DyFeO<small><sub>3</sub></small> electrode material, with an average pore size of 3.41 nm, was confirmed using Brunauer–Emmett–Teller analysis and comprehensively characterized through XRD, FESEM, TEM, XPS, Raman spectroscopy, EPR, and zeta potential measurements. The fabricated SC, operating in a 0.5 M Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> aqueous electrolyte, exhibited a high working voltage of 2.5 V, delivering an energy density of 41.81 W h kg<small><sup>-1</sup></small> at a power density of 1250 W kg<small><sup>-1</sup></small>, with 90% capacitance retention after 10,000 cycles. Furthermore, the addition of 20% acetonitrile (AN) to the 0.5 M Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> electrolyte extended the potential window to 3.1 V, increasing the energy density to 84.43 W h kg<small><sup>-1</sup></small> at a power density of 1550 W kg<small><sup>-1</sup></small>. The fabricated symmetric SC demonstrated excellent long-term stability, retaining approximately 99% capacitance and Coulombic efficiency after a 600-hour float voltage test. These findings, for the first time, reveal the potential of nanoporous DyFeO<small><sub>3</sub></small> as electrode material in a 0.5 M Na<small><sub>2</sub></small>SO<small><sub>4</sub></small>(aq.)/20%AN electrolyte for advancing symmetric SCs, featuring an unprecedented ultra-wide electrochemical stability window along with significantly enhanced energy and power densities.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"6 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06769j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous supercapacitors (SCs) are often constrained by low operational voltage and energy density due to the low decomposition voltage of water. In this work, we address these limitations by fabricating symmetric SCs using nanoporous Dysprosium Orthoferrite (DyFeO3) electrodes in dilute, neutral aqueous electrolytes. The nanoporous architecture of the DyFeO3 electrode material, with an average pore size of 3.41 nm, was confirmed using Brunauer–Emmett–Teller analysis and comprehensively characterized through XRD, FESEM, TEM, XPS, Raman spectroscopy, EPR, and zeta potential measurements. The fabricated SC, operating in a 0.5 M Na2SO4 aqueous electrolyte, exhibited a high working voltage of 2.5 V, delivering an energy density of 41.81 W h kg-1 at a power density of 1250 W kg-1, with 90% capacitance retention after 10,000 cycles. Furthermore, the addition of 20% acetonitrile (AN) to the 0.5 M Na2SO4 electrolyte extended the potential window to 3.1 V, increasing the energy density to 84.43 W h kg-1 at a power density of 1550 W kg-1. The fabricated symmetric SC demonstrated excellent long-term stability, retaining approximately 99% capacitance and Coulombic efficiency after a 600-hour float voltage test. These findings, for the first time, reveal the potential of nanoporous DyFeO3 as electrode material in a 0.5 M Na2SO4(aq.)/20%AN electrolyte for advancing symmetric SCs, featuring an unprecedented ultra-wide electrochemical stability window along with significantly enhanced energy and power densities.
通过对 DyFeO3 电极和水性电解质进行工程设计开发出高压对称超级电容器
由于水的分解电压较低,水性超级电容器(SC)通常受制于较低的工作电压和能量密度。在这项工作中,我们利用纳米多孔镝正铁(DyFeO3)电极在稀释的中性水电解质中制造出了对称超级电容器,从而解决了这些限制。DyFeO3 电极材料的纳米多孔结构(平均孔径为 3.41 nm)已通过布鲁瑙尔-艾美特-泰勒分析法得到证实,并通过 XRD、FESEM、TEM、XPS、拉曼光谱、EPR 和 zeta 电位测量法进行了全面表征。在 0.5 M Na2SO4 水基电解液中工作时,所制备的 SC 显示出 2.5 V 的高工作电压,在功率密度为 1250 W kg-1 时可提供 41.81 W h kg-1 的能量密度,在 10,000 次循环后电容保持率为 90%。此外,在 0.5 M Na2SO4 电解液中加入 20% 的乙腈 (AN) 可将电位窗口扩展到 3.1 V,在功率密度为 1550 W kg-1 时,能量密度增至 84.43 W h kg-1。制造出的对称 SC 具有出色的长期稳定性,在经过 600 小时的浮动电压测试后,仍能保持约 99% 的电容和库仑效率。这些发现首次揭示了纳米多孔 DyFeO3 作为电极材料在 0.5 M Na2SO4(aq.)/20%AN 电解液中推动对称 SC 发展的潜力,其特点是具有前所未有的超宽电化学稳定性窗口以及显著增强的能量和功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信