{"title":"Digitally-assisted structure design of a large-size proton exchange membrane fuel cell","authors":"Wenming Huo, Linhao Fan, Yunfei Xu, Mohamed Benbouzid, Wenzhen Xu, Fei Gao, Weizhuo Li, Nian Shan, Biao Xie, Haipeng Huang, Bohao Liu, Yassine Amirat, Chuan Fang, Xiaohui Li, Quanquan Gan, Feiqiang Li, Kui Jiao","doi":"10.1039/d4ee04713c","DOIUrl":null,"url":null,"abstract":"The flow field plays a significant role in the performance of proton exchange membrane (PEM) fuel cells. However, its complex structure leads to unacceptable development costs and time commonly using the trial-and-error method based on many experiments. Herein, we propose a digitally-assisted method to accelerate the development process and reduce costs. Comprehensive experiments and tests are conducted using the commercial-size PEM fuel cell with an active area of 332 cm<small><sup>2</sup></small>, including the investigation of polarization curves, five sensitivity parameters under seven different current densities, and spatial distributions. A high-resolution printed circuit board with 408 segments of 0.8 cm<small><sup>2</sup></small> is employed to explore the current density distribution. The commercial-size PEM fuel cell is further digitalized with a self-developed fuel cell numerical model, which is strictly verified in terms of all experimental data. The digital multi-physics information inside PEM fuel cells is obtained and evaluated <em>via</em> this efficient numerical model in order to search for the structure defects quickly and accurately. Afterwards, targeted structure optimization is effectively carried out to achieve a better performance, with the maximum deviation of oxygen concentration in the channels decreasing from 26.33% to 3.78%. This digital method is very valuable for the forward design of flow field structures to considerably reduce the development cost and time.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"254 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04713c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The flow field plays a significant role in the performance of proton exchange membrane (PEM) fuel cells. However, its complex structure leads to unacceptable development costs and time commonly using the trial-and-error method based on many experiments. Herein, we propose a digitally-assisted method to accelerate the development process and reduce costs. Comprehensive experiments and tests are conducted using the commercial-size PEM fuel cell with an active area of 332 cm2, including the investigation of polarization curves, five sensitivity parameters under seven different current densities, and spatial distributions. A high-resolution printed circuit board with 408 segments of 0.8 cm2 is employed to explore the current density distribution. The commercial-size PEM fuel cell is further digitalized with a self-developed fuel cell numerical model, which is strictly verified in terms of all experimental data. The digital multi-physics information inside PEM fuel cells is obtained and evaluated via this efficient numerical model in order to search for the structure defects quickly and accurately. Afterwards, targeted structure optimization is effectively carried out to achieve a better performance, with the maximum deviation of oxygen concentration in the channels decreasing from 26.33% to 3.78%. This digital method is very valuable for the forward design of flow field structures to considerably reduce the development cost and time.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).