{"title":"A Chiral COFs Membrane for Enantioselective Amino Acid Separation","authors":"Jian Jin, Narmadha Manoranjan, Wangxi Fang, Yuzhang Zhu","doi":"10.1002/anie.202417088","DOIUrl":null,"url":null,"abstract":"Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel. This composite membrane exhibits excellent selectivity for racemic phenylalanine with the highest enantiomeric excess value of up to 99.4%. The adsorption and molecular modeling studies substantiate the experiment results by showing higher bonding affinity towards D-isomer over L-isomer. The excellent enantioselective gating performance unveils the porous COF skeleton with chiral selectors and the size-matching synergy for stereoselective interactions with chiral isomers.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"19 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417088","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel. This composite membrane exhibits excellent selectivity for racemic phenylalanine with the highest enantiomeric excess value of up to 99.4%. The adsorption and molecular modeling studies substantiate the experiment results by showing higher bonding affinity towards D-isomer over L-isomer. The excellent enantioselective gating performance unveils the porous COF skeleton with chiral selectors and the size-matching synergy for stereoselective interactions with chiral isomers.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.