Single Atomic Cu-C3 Sites Catalyzed Interfacial Chemistry in Bi@C for Ultra-Stable and Ultrafast Sodium-Ion Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Guochang Li, Yifan Tang, Yuhui Wang, Shuangxing Cui, Hao Chen, Prof. Yaoping Hu, Prof. Huan Pang, Prof. Lei Han
{"title":"Single Atomic Cu-C3 Sites Catalyzed Interfacial Chemistry in Bi@C for Ultra-Stable and Ultrafast Sodium-Ion Batteries","authors":"Dr. Guochang Li,&nbsp;Yifan Tang,&nbsp;Yuhui Wang,&nbsp;Shuangxing Cui,&nbsp;Hao Chen,&nbsp;Prof. Yaoping Hu,&nbsp;Prof. Huan Pang,&nbsp;Prof. Lei Han","doi":"10.1002/anie.202417602","DOIUrl":null,"url":null,"abstract":"<p>Regulating interfacial chemistry at electrode-electrolyte interface by designing catalytic electrode material is crucial and challenging for optimizing battery performance. Herein, a novel single atom Cu regulated Bi@C with Cu−C<sub>3</sub> site (Bi@SA Cu−C) have been designed via the simple pyrolysis of metal-organic framework. Experimental investigations and theoretical calculations indicate the Cu−C<sub>3</sub> sites accelerate the dissociation of P−F and C−O bonds in NaPF<sub>6</sub>-ether-based electrolyte and catalyze the formation of inorganic-rich and powerful solid electrolyte interphase. In addition, the Cu−C<sub>3</sub> sites with delocalized electron around Cu trigger an uneven charge distribution and induce an in-plane local electric field, which facilitates the adsorption of Na<sup>+</sup> and reduces the Na<sup>+</sup> migration energy barrier. Consequently, the obtained Bi@SA Cu−C achieves a state-of-the-art reversible capacity, ultrahigh rate capability, and long-term cycling durability. The as-constructed full cell delivers a high capacity of 351 mAh g<sup>−1</sup> corresponding to an energy density of 265 Wh kg<sup>−1</sup>. This work provides a new strategy to realize high-efficient sodium ion storage for alloy-based anode through constructing single-atom modulator integrated catalysis and promotion effect into one entity.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 5","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417602","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating interfacial chemistry at electrode-electrolyte interface by designing catalytic electrode material is crucial and challenging for optimizing battery performance. Herein, a novel single atom Cu regulated Bi@C with Cu−C3 site (Bi@SA Cu−C) have been designed via the simple pyrolysis of metal-organic framework. Experimental investigations and theoretical calculations indicate the Cu−C3 sites accelerate the dissociation of P−F and C−O bonds in NaPF6-ether-based electrolyte and catalyze the formation of inorganic-rich and powerful solid electrolyte interphase. In addition, the Cu−C3 sites with delocalized electron around Cu trigger an uneven charge distribution and induce an in-plane local electric field, which facilitates the adsorption of Na+ and reduces the Na+ migration energy barrier. Consequently, the obtained Bi@SA Cu−C achieves a state-of-the-art reversible capacity, ultrahigh rate capability, and long-term cycling durability. The as-constructed full cell delivers a high capacity of 351 mAh g−1 corresponding to an energy density of 265 Wh kg−1. This work provides a new strategy to realize high-efficient sodium ion storage for alloy-based anode through constructing single-atom modulator integrated catalysis and promotion effect into one entity.

Abstract Image

单原子 Cu-C3 位催化 Bi@C 中的界面化学,实现超稳定和超快钠离子电池
通过设计催化电极材料来调节电极-电解质界面的界面化学性质,对于优化电池性能至关重要,也极具挑战性。在此,我们通过简单的金属有机框架热解,设计出一种新型单原子 Cu 调节的具有 Cu-C3 位点的 Bi@C(Bi@SA Cu-C)。实验研究和理论计算表明,Cu-C3 位点可加速 NaPF6 乙醚基电解质中 P-F 和 C-O 键的解离,并催化形成富含无机物的强固电解质相间体。此外,Cu-C3位点在Cu周围的电子离域引发了不均匀的电荷分布,并诱发了面内局部电场,从而促进了Na+的吸附,降低了Na+迁移能垒。因此,所获得的 Bi@SA Cu-C 实现了最先进的可逆容量、超高速率能力和长期循环耐久性。所构建的全电池可提供 351 mAh g-1 的高容量,能量密度为 265 Wh kg-1。这项研究通过构建集催化和促进效应于一体的单原子调制器,为实现合金基阳极的高效钠离子存储提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信