Mechanical shutdown of battery separators: Silicon anode failure

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ji-Young Seo, Suhwan Kim, Jung-Hui Kim, Yong-Hyeok Lee, Jin-Young Shin, Somi Jeong, Dong-Wook Sung, Yong Min Lee, Sang-Young Lee
{"title":"Mechanical shutdown of battery separators: Silicon anode failure","authors":"Ji-Young Seo, Suhwan Kim, Jung-Hui Kim, Yong-Hyeok Lee, Jin-Young Shin, Somi Jeong, Dong-Wook Sung, Yong Min Lee, Sang-Young Lee","doi":"10.1038/s41467-024-54313-y","DOIUrl":null,"url":null,"abstract":"<p>The pulverization of silicon (Si) anode materials is recognized as a major cause of their poor cycling performance, yet a mechanistic understanding of this degradation from a full cell perspective remains elusive. Here, we identify an overlooked contributor to Si anode failure: mechanical shutdown of separators. Through mechano-structural characterization of Si full cells, combined with digital-twin simulation, we demonstrate that the volume expansion of Si exerts localized compressive stress on commercial polyethylene separators, leading to pore collapse. This structural disruption impairs ion transport across the separator, exacerbating redox nonuniformity and Si pulverization. Compression simulation reveals that a Young’s modulus greater than 1 GPa is required for separators to withstand the volume expansion of Si. To fulfill this requirement, we design a high modulus separator, enabling a high-areal-capacity pouch-type Si full cell to retain 88% capacity after 400 cycles at a fast charge rate of 4.5 mA cm<sup>−2</sup>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"254 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54313-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The pulverization of silicon (Si) anode materials is recognized as a major cause of their poor cycling performance, yet a mechanistic understanding of this degradation from a full cell perspective remains elusive. Here, we identify an overlooked contributor to Si anode failure: mechanical shutdown of separators. Through mechano-structural characterization of Si full cells, combined with digital-twin simulation, we demonstrate that the volume expansion of Si exerts localized compressive stress on commercial polyethylene separators, leading to pore collapse. This structural disruption impairs ion transport across the separator, exacerbating redox nonuniformity and Si pulverization. Compression simulation reveals that a Young’s modulus greater than 1 GPa is required for separators to withstand the volume expansion of Si. To fulfill this requirement, we design a high modulus separator, enabling a high-areal-capacity pouch-type Si full cell to retain 88% capacity after 400 cycles at a fast charge rate of 4.5 mA cm−2.

Abstract Image

电池隔膜机械停机:硅阳极故障
硅(Si)阳极材料的粉化被认为是导致其循环性能不佳的主要原因,但从整个电池的角度来看,对这种降解的机理理解仍是空白。在这里,我们发现了硅阳极失效的一个被忽视的因素:分离器的机械关断。通过对硅全电池进行机械结构表征并结合数字孪生模拟,我们证明了硅的体积膨胀会对商用聚乙烯隔膜产生局部压应力,从而导致孔隙塌陷。这种结构性破坏会影响分离器的离子传输,加剧氧化还原不均匀性和硅粉化。压缩模拟显示,分离器需要大于 1 GPa 的杨氏模量才能承受硅的体积膨胀。为了满足这一要求,我们设计了一种高模量隔膜,使高面积容量的袋式硅全电池在 4.5 mA cm-2 的快速充电速率下循环 400 次后仍能保持 88% 的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信