Electric Field Control Of Moiré Skyrmion Phases in Twisted Multiferroic NiI2 Bilayers

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tiago V. C. Antão, Jose L. Lado, Adolfo O. Fumega
{"title":"Electric Field Control Of Moiré Skyrmion Phases in Twisted Multiferroic NiI2 Bilayers","authors":"Tiago V. C. Antão, Jose L. Lado, Adolfo O. Fumega","doi":"10.1021/acs.nanolett.4c04582","DOIUrl":null,"url":null,"abstract":"Twisted magnetic van der Waals materials provide a flexible platform to engineer unconventional magnetism. Here we demonstrate the emergence of electrically tunable topological moiré magnetism in twisted bilayers of the spin-spiral multiferroic NiI<sub>2</sub>. We establish a rich phase diagram featuring uniform spiral phases, a variety of <i>kπ</i>-skyrmion lattices, and nematic spin textures ordered at the moiré scale. The emergence of these phases is driven by the local stacking and the resulting moiré modulated frustration. Notably, when the spin-spiral wavelength is commensurate with the moiré length scale by an integer <i>k</i>, multiwalled skyrmions become pinned to the moiré pattern. We show that the strong magnetoelectric coupling displayed by the moiré multiferroic allows electric control of the <i>kπ</i>-skyrmion lattices by an out-of-plane electric field. Our results establish a highly tunable platform for skyrmionics based on twisted van der Waals multiferroics, potentially enabling a new generation of ultrathin topologically protected spintronic devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04582","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted magnetic van der Waals materials provide a flexible platform to engineer unconventional magnetism. Here we demonstrate the emergence of electrically tunable topological moiré magnetism in twisted bilayers of the spin-spiral multiferroic NiI2. We establish a rich phase diagram featuring uniform spiral phases, a variety of -skyrmion lattices, and nematic spin textures ordered at the moiré scale. The emergence of these phases is driven by the local stacking and the resulting moiré modulated frustration. Notably, when the spin-spiral wavelength is commensurate with the moiré length scale by an integer k, multiwalled skyrmions become pinned to the moiré pattern. We show that the strong magnetoelectric coupling displayed by the moiré multiferroic allows electric control of the -skyrmion lattices by an out-of-plane electric field. Our results establish a highly tunable platform for skyrmionics based on twisted van der Waals multiferroics, potentially enabling a new generation of ultrathin topologically protected spintronic devices.

Abstract Image

扭转多铁性 NiI2 双层膜中 Moiré Skyrmion 相的电场控制
扭转磁性范德华材料为设计非传统磁性提供了一个灵活的平台。在这里,我们展示了自旋螺旋多铁氧体 NiI2 扭曲双层材料中出现的电可调拓扑摩尔磁性。我们建立了一个丰富的相图,其中包括均匀的螺旋相、各种 kπ-skyrmion 晶格以及在摩尔尺度上有序的向列自旋纹理。这些相的出现是由局部堆叠和由此产生的摩尔纹调制挫折所驱动的。值得注意的是,当自旋螺旋波长与摩尔纹长度尺度的整数 k 相称时,多壁天球就会被固定在摩尔纹图案上。我们的研究表明,摩尔纹多铁氧体所显示的强磁电耦合允许通过平面外电场对 kπ 天线粒体晶格进行电控制。我们的研究结果为基于扭曲范德瓦尔斯多铁氧体的天电离子技术建立了一个高度可调的平台,从而有可能实现新一代超薄拓扑保护自旋电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信