{"title":"Chemotaxis of Rhizosphere Pseudomonas sp. Induced by Foliar Spraying of Lanthanum Reduces Cadmium Uptake by Pakchoi","authors":"Meng Wang, Lei Yu, Jing Wang, Luyao Qin, Xiaoyi Sun, Jiaxiao Liu, Yun Han, Shibao Chen","doi":"10.1016/j.jhazmat.2024.136625","DOIUrl":null,"url":null,"abstract":"Foliar application of rare earth micronutrient of lanthanum (La) exhibits great potential in reducing cadmium (Cd) uptake in crops, the underlying mechanisms controlling the interaction between Cd toxicity-relieved crops and soil microbiota are poorly understood. In this study, LaCl<sub>3</sub> with the concentrations of 10 and 30<!-- --> <!-- -->μM was sprayed on pakchoi (<em>Brassica chinensis</em> L.) planting on Cd contaminated solution and soil to determine the changes of root metabolites and rhizosphere bacterial communities. Compared to the control, Cd concentration in pakchoi leaves was significantly decreased by 30.9% and 22.6% with the high group under both hydroponic and pot culture by applying 30<!-- --> <!-- -->μM LaCl<sub>3</sub>. Herein, the concrete evidence is provided that pakchoi plants in response to foliar-spraying La under soil or solution Cd toxicity can promote the root secretion of amino acids, resulting in a strong enrichment of nitrogen-related microorganisms. To probe this linkage, a <em>Pseudomonas</em> representative specie was isolated that had the ability of consuming alanine, the most oversecreted root exudate due to La application. Further results demonstrated that this strain had the capacities for alleviating Cd toxicity and enhancing crop growth by immobilizing Cd and secreting plant-beneficial metabolites. This study reveals a plant-extrudate-microbiome feedback loop for responding to La-relieved Cd toxicity in crops by the chemotaxis of rhizosphere <em>Pseudomonas</em> toward alanine secreted by pakchoi.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"8 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136625","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Foliar application of rare earth micronutrient of lanthanum (La) exhibits great potential in reducing cadmium (Cd) uptake in crops, the underlying mechanisms controlling the interaction between Cd toxicity-relieved crops and soil microbiota are poorly understood. In this study, LaCl3 with the concentrations of 10 and 30 μM was sprayed on pakchoi (Brassica chinensis L.) planting on Cd contaminated solution and soil to determine the changes of root metabolites and rhizosphere bacterial communities. Compared to the control, Cd concentration in pakchoi leaves was significantly decreased by 30.9% and 22.6% with the high group under both hydroponic and pot culture by applying 30 μM LaCl3. Herein, the concrete evidence is provided that pakchoi plants in response to foliar-spraying La under soil or solution Cd toxicity can promote the root secretion of amino acids, resulting in a strong enrichment of nitrogen-related microorganisms. To probe this linkage, a Pseudomonas representative specie was isolated that had the ability of consuming alanine, the most oversecreted root exudate due to La application. Further results demonstrated that this strain had the capacities for alleviating Cd toxicity and enhancing crop growth by immobilizing Cd and secreting plant-beneficial metabolites. This study reveals a plant-extrudate-microbiome feedback loop for responding to La-relieved Cd toxicity in crops by the chemotaxis of rhizosphere Pseudomonas toward alanine secreted by pakchoi.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.