Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk–Planet Systems

Shunyuan Mao, 顺元 毛, Ruobing Dong, 若冰 董, Kwang Moo Yi, Lu Lu, Sifan Wang and Paris Perdikaris
{"title":"Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk–Planet Systems","authors":"Shunyuan Mao, 顺元 毛, Ruobing Dong, 若冰 董, Kwang Moo Yi, Lu Lu, Sifan Wang and Paris Perdikaris","doi":"10.3847/1538-4357/ad8086","DOIUrl":null,"url":null,"abstract":"We introduce Disk2Planet, a machine-learning-based tool to infer key parameters in disk–planet systems from observed protoplanetary disk structures. Disk2Planet takes as input the disk structures in the form of 2D density and velocity maps, and outputs disk and planet properties, that is, the Shakura–Sunyaev viscosity, the disk aspect ratio, the planet–star mass ratio, and the planet’s radius and azimuth. We integrate the Covariance Matrix Adaptation Evolution Strategy, an evolutionary algorithm tailored for complex optimization problems, and the Protoplanetary Disk Operator Network, a neural network designed to predict solutions of disk–planet interactions. Our tool is fully automated and can retrieve parameters in one system in 3 minutes on an Nvidia A100 graphics processing unit. We empirically demonstrate that our tool achieves percent-level or higher accuracy, and is able to handle missing data and unknown levels of noise.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Disk2Planet, a machine-learning-based tool to infer key parameters in disk–planet systems from observed protoplanetary disk structures. Disk2Planet takes as input the disk structures in the form of 2D density and velocity maps, and outputs disk and planet properties, that is, the Shakura–Sunyaev viscosity, the disk aspect ratio, the planet–star mass ratio, and the planet’s radius and azimuth. We integrate the Covariance Matrix Adaptation Evolution Strategy, an evolutionary algorithm tailored for complex optimization problems, and the Protoplanetary Disk Operator Network, a neural network designed to predict solutions of disk–planet interactions. Our tool is fully automated and can retrieve parameters in one system in 3 minutes on an Nvidia A100 graphics processing unit. We empirically demonstrate that our tool achieves percent-level or higher accuracy, and is able to handle missing data and unknown levels of noise.
Disk2Planet:用于盘-行星系统参数推断的稳健而自动化的机器学习工具
我们介绍的 Disk2Planet 是一种基于机器学习的工具,用于从观测到的原行星盘结构推断盘-行星系统的关键参数。Disk2Planet以二维密度和速度图的形式输入盘结构,并输出盘和行星的属性,即沙库拉-苏尼耶夫粘度、盘长宽比、行星-恒星质量比以及行星的半径和方位角。我们整合了协方差矩阵适应进化策略(一种为复杂优化问题量身定制的进化算法)和原行星盘算子网络(一种旨在预测行星盘相互作用解的神经网络)。我们的工具是全自动的,在 Nvidia A100 图形处理单元上检索一个系统的参数只需 3 分钟。我们通过经验证明,我们的工具可以达到百分之级或更高的精确度,并且能够处理缺失数据和未知水平的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信