In Situ Derivation of Dual-Active Co/CoO Heterojunction Nanoarrays for Synergistic Catalytic NH3 Synthesis

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Changxu Ma, Yimeng Li, Dan Zhao, Jun Yan, Dianxue Cao, Jing Zhao, Haijiao Xie, Jiaxin Yao, Guiling Wang
{"title":"In Situ Derivation of Dual-Active Co/CoO Heterojunction Nanoarrays for Synergistic Catalytic NH3 Synthesis","authors":"Changxu Ma, Yimeng Li, Dan Zhao, Jun Yan, Dianxue Cao, Jing Zhao, Haijiao Xie, Jiaxin Yao, Guiling Wang","doi":"10.1021/acssuschemeng.4c07167","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) is a promising alternative to the conventional Haber–Bosch NH<sub>3</sub> synthesis process. To address the incompatibility between high yield and high selectivity for NH<sub>3</sub> synthesis under alkaline conditions, we report an in situ-derived Co/CoO heterojunction nanoarray bifunctional catalyst (Co@CoO/NF). The dual-site catalytic configuration accelerates the H–OH bond cleavage of H<sub>2</sub>O without reducing NO<sub>3</sub><sup>–</sup> active site utilization, providing sufficient protons for NO<sub>3</sub><sup>–</sup> hydrogenation and suppressing competitive hydrogen evolution at high overpotentials. Density functional theory calculations together with kinetic analysis reveal that electron migration between heterogeneous interfaces enhances Co@CoO/NF’s targeted adsorption: CoO sites favor NO<sub>3</sub><sup>–</sup> adsorption, while Co sites favor H<sub>2</sub>O adsorption. The synergistic effect of defect sites from annealing and the in situ-derived nanoarray structure from metal–organic frameworks improve electron transfer and mass transport efficiency, lowering the activation energy barrier for NO<sub>3</sub>RR and promoting intermediate migration along the interface. These benefits give Co@CoO/NF the improved NH<sub>3</sub> yield rate of 129.83 mg h<sup>–1</sup> cm<sup>–2</sup>, a Faradaic efficiency of 96.49%, and a current density of 1637.43 mA cm<sup>–2</sup>, along with long-term stability over a continuous 40 h cycle. This study presents a practical strategy for a dual active site catalyst electrode with enhanced NO<sub>3</sub>RR activity and selectivity, offering promising prospects for new energy applications.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"6 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrate reduction reaction (NO3RR) is a promising alternative to the conventional Haber–Bosch NH3 synthesis process. To address the incompatibility between high yield and high selectivity for NH3 synthesis under alkaline conditions, we report an in situ-derived Co/CoO heterojunction nanoarray bifunctional catalyst (Co@CoO/NF). The dual-site catalytic configuration accelerates the H–OH bond cleavage of H2O without reducing NO3 active site utilization, providing sufficient protons for NO3 hydrogenation and suppressing competitive hydrogen evolution at high overpotentials. Density functional theory calculations together with kinetic analysis reveal that electron migration between heterogeneous interfaces enhances Co@CoO/NF’s targeted adsorption: CoO sites favor NO3 adsorption, while Co sites favor H2O adsorption. The synergistic effect of defect sites from annealing and the in situ-derived nanoarray structure from metal–organic frameworks improve electron transfer and mass transport efficiency, lowering the activation energy barrier for NO3RR and promoting intermediate migration along the interface. These benefits give Co@CoO/NF the improved NH3 yield rate of 129.83 mg h–1 cm–2, a Faradaic efficiency of 96.49%, and a current density of 1637.43 mA cm–2, along with long-term stability over a continuous 40 h cycle. This study presents a practical strategy for a dual active site catalyst electrode with enhanced NO3RR activity and selectivity, offering promising prospects for new energy applications.

Abstract Image

用于协同催化 NH3 合成的原位衍生双活性 Co/CoO 异质结纳米阵列
电催化硝酸盐还原反应(NO3RR)是传统哈伯-博什 NH3 合成工艺的一种很有前途的替代工艺。为了解决碱性条件下合成 NH3 的高产率和高选择性之间的矛盾,我们报告了一种原位衍生 Co/CoO 异质结纳米阵列双功能催化剂(Co@CoO/NF)。双位点催化结构在不降低 NO3 活性位点利用率的情况下加速了 H-OH 键对 H2O 的裂解,为 NO3 加氢提供了充足的质子,并抑制了高过电位下的竞争性氢进化。密度泛函理论计算和动力学分析表明,电子在异质界面之间的迁移增强了 Co@CoO/NF 的定向吸附能力:CoO 位点有利于吸附 NO3,而 Co 位点则有利于吸附 H2O。退火产生的缺陷位点和金属有机框架原位衍生的纳米阵列结构的协同效应提高了电子传递和质量传输效率,降低了 NO3RR 的活化能垒,促进了沿界面的中间迁移。这些优点使 Co@CoO/NF 的 NH3 产率提高到 129.83 mg h-1 cm-2,法拉第效率达到 96.49%,电流密度达到 1637.43 mA cm-2,并能在连续 40 小时的循环中保持长期稳定性。本研究提出了一种实用的双活性位点催化剂电极策略,可提高 NO3RR 活性和选择性,为新能源应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信