Investigating secondary ice production in a deep convective cloud with a 3D bin microphysics model: Part II - Effects on the cloud formation and development
IF 4.5 2区 地球科学Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Pierre Grzegorczyk , Wolfram Wobrock , Antoine Canzi , Laurence Niquet , Frédéric Tridon , Céline Planche
{"title":"Investigating secondary ice production in a deep convective cloud with a 3D bin microphysics model: Part II - Effects on the cloud formation and development","authors":"Pierre Grzegorczyk , Wolfram Wobrock , Antoine Canzi , Laurence Niquet , Frédéric Tridon , Céline Planche","doi":"10.1016/j.atmosres.2024.107797","DOIUrl":null,"url":null,"abstract":"<div><div>Secondary ice production (SIP) leads to the formation of new ice particles from preexisting ones. Besides generating ice crystals, SIP can also influence cloud characteristics, including convection, precipitation, and even radiative properties. This study examines the effect of ice crystal formation by Hallett-Mossop, fragmentation of freezing drops, and fragmentation due to ice–ice collision processes in an idealized deep convective cloud observed during the HAIC/HIWC campaign, using the 3D bin microphysics scheme DESCAM. Our results indicate that heterogeneous ice nucleation and fragmentation of freezing drops play a role during the early formation of the cloud while after that, Hallett-Mossop and ice-ice breakup processes dominate, representing 17.6 % and 81.5 % of the ice crystal production, for temperatures warmer than −30°C. For temperatures colder than −30°C, homogeneous and heterogeneous ice nucleation processes are the main contributors to ice crystal formation. The impact of each SIP process on particle size distributions is analyzed by tracking air parcel trajectories. This study also shows the effect of SIP processes on cloud development. Implementing SIP results in a decrease in cloud top altitude by around 1.5 km. Our analysis shows that this effect is caused by increased latent heat released below 11 km, resulting from a stronger vapor deposition on more numerous ice crystals. This enhances convection at lower levels but inhibits it above. Furthermore, incorporating SIP leads to 15 % decrease in total precipitation amount and 25 % reduction of intense rainfall (accumulated precipitation over 40 mm). Hence, our study emphasizes the importance of SIP mechanisms in cloud development and precipitation.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"314 ","pages":"Article 107797"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005799","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary ice production (SIP) leads to the formation of new ice particles from preexisting ones. Besides generating ice crystals, SIP can also influence cloud characteristics, including convection, precipitation, and even radiative properties. This study examines the effect of ice crystal formation by Hallett-Mossop, fragmentation of freezing drops, and fragmentation due to ice–ice collision processes in an idealized deep convective cloud observed during the HAIC/HIWC campaign, using the 3D bin microphysics scheme DESCAM. Our results indicate that heterogeneous ice nucleation and fragmentation of freezing drops play a role during the early formation of the cloud while after that, Hallett-Mossop and ice-ice breakup processes dominate, representing 17.6 % and 81.5 % of the ice crystal production, for temperatures warmer than −30°C. For temperatures colder than −30°C, homogeneous and heterogeneous ice nucleation processes are the main contributors to ice crystal formation. The impact of each SIP process on particle size distributions is analyzed by tracking air parcel trajectories. This study also shows the effect of SIP processes on cloud development. Implementing SIP results in a decrease in cloud top altitude by around 1.5 km. Our analysis shows that this effect is caused by increased latent heat released below 11 km, resulting from a stronger vapor deposition on more numerous ice crystals. This enhances convection at lower levels but inhibits it above. Furthermore, incorporating SIP leads to 15 % decrease in total precipitation amount and 25 % reduction of intense rainfall (accumulated precipitation over 40 mm). Hence, our study emphasizes the importance of SIP mechanisms in cloud development and precipitation.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.