Machine learning-based prediction of one-year mortality in ischemic stroke patients.

Oxford open neuroscience Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.1093/oons/kvae011
Ahmad Abujaber, Said Yaseen, Yahia Imam, Abdulqadir Nashwan, Naveed Akhtar
{"title":"Machine learning-based prediction of one-year mortality in ischemic stroke patients.","authors":"Ahmad Abujaber, Said Yaseen, Yahia Imam, Abdulqadir Nashwan, Naveed Akhtar","doi":"10.1093/oons/kvae011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate prediction of mortality following an ischemic stroke is essential for tailoring personalized treatment strategies. This study evaluates the effectiveness of machine learning models in predicting one-year mortality after an ischemic stroke.</p><p><strong>Methods: </strong>Five machine learning models were trained using data from a national stroke registry, with logistic regression demonstrating the highest performance. The SHapley Additive exPlanations (SHAP) analysis explained the model's outcomes and defined the influential predictive factors.</p><p><strong>Results: </strong>Analyzing 8183 ischemic stroke patients, logistic regression achieved 83% accuracy, 0.89 AUC, and an F1 score of 0.83. Significant predictors included stroke severity, pre-stroke functional status, age, hospital-acquired pneumonia, ischemic stroke subtype, tobacco use, and co-existing diabetes mellitus (DM).</p><p><strong>Discussion: </strong>The model highlights the importance of predicting mortality in enhancing personalized stroke care. Apart from pneumonia, all predictors can serve the early prediction of mortality risk which supports the initiation of early preventive measures and in setting realistic expectations of disease outcomes for all stakeholders. The identified tobacco paradox warrants further investigation.</p><p><strong>Conclusion: </strong>This study offers a promising tool for early prediction of stroke mortality and for advancing personalized stroke care. It emphasizes the need for prospective studies to validate these findings in diverse clinical settings.</p>","PeriodicalId":74386,"journal":{"name":"Oxford open neuroscience","volume":"3 ","pages":"kvae011"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oons/kvae011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate prediction of mortality following an ischemic stroke is essential for tailoring personalized treatment strategies. This study evaluates the effectiveness of machine learning models in predicting one-year mortality after an ischemic stroke.

Methods: Five machine learning models were trained using data from a national stroke registry, with logistic regression demonstrating the highest performance. The SHapley Additive exPlanations (SHAP) analysis explained the model's outcomes and defined the influential predictive factors.

Results: Analyzing 8183 ischemic stroke patients, logistic regression achieved 83% accuracy, 0.89 AUC, and an F1 score of 0.83. Significant predictors included stroke severity, pre-stroke functional status, age, hospital-acquired pneumonia, ischemic stroke subtype, tobacco use, and co-existing diabetes mellitus (DM).

Discussion: The model highlights the importance of predicting mortality in enhancing personalized stroke care. Apart from pneumonia, all predictors can serve the early prediction of mortality risk which supports the initiation of early preventive measures and in setting realistic expectations of disease outcomes for all stakeholders. The identified tobacco paradox warrants further investigation.

Conclusion: This study offers a promising tool for early prediction of stroke mortality and for advancing personalized stroke care. It emphasizes the need for prospective studies to validate these findings in diverse clinical settings.

基于机器学习的缺血性中风患者一年死亡率预测。
背景:准确预测缺血性脑卒中后的死亡率对于制定个性化治疗策略至关重要。本研究评估了机器学习模型在预测缺血性中风后一年死亡率方面的有效性:方法: 使用来自全国中风登记处的数据训练了五种机器学习模型,其中逻辑回归表现最佳。结果:对 8183 例缺血性脑卒中患者进行了分析,结果表明,这些患者的病死率为 1%:对 8183 名缺血性中风患者进行分析,逻辑回归的准确率达到 83%,AUC 为 0.89,F1 得分为 0.83。重要的预测因素包括卒中严重程度、卒中前功能状态、年龄、医院获得性肺炎、缺血性卒中亚型、吸烟和并存糖尿病(DM):讨论:该模型强调了预测死亡率对加强个性化卒中治疗的重要性。除肺炎外,所有预测因子均可用于早期预测死亡风险,从而支持早期预防措施的启动,并为所有利益相关者设定切合实际的疾病结果预期。已发现的烟草悖论值得进一步研究:这项研究为早期预测脑卒中死亡率和推进个性化脑卒中护理提供了一个很有前景的工具。它强调了在不同临床环境中验证这些发现的前瞻性研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信