Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures.
IF 1.1 3区 计算机科学Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures.","authors":"Zhimin Tian, Huijuan Hao, Guowei Dai, Yajuan Li","doi":"10.1080/0954898X.2024.2428713","DOIUrl":null,"url":null,"abstract":"<p><p>Tomato harvesting in intelligent greenhouses is crucial for reducing costs and optimizing management. Agricultural robots, as an automated solution, require advanced visual perception. This study proposes a tomato detection and counting algorithm based on YOLOv8 (TCAttn-YOLOv8). To handle small, occluded tomato targets in images, a new detection layer (NDL) is added to the Neck and Head decoupled structure, improving small object recognition. The ColBlock, a dual-branch structure leveraging Transformer advantages, enhances feature extraction and fusion, focusing on densely targeted regions and minimizing small object feature loss in complex backgrounds. C2fGhost and GhostConv are integrated into the Neck network to reduce model parameters and floating-point operations, improving feature expression. The WIoU (Wise-IoU) loss function is adopted to accelerate convergence and increase regression accuracy. Experimental results show that TCAttn-YOLOv8 achieves an mAP@0.5 of 96.31%, with an FPS of 95 and a parameter size of 2.7 M, outperforming seven lightweight YOLO algorithms. For automated tomato counting, the <i>R<sup>2</sup></i> between predicted and actual counts is 0.9282, indicating the algorithm's suitability for replacing manual counting. This method effectively supports tomato detection and counting in intelligent greenhouses, offering valuable insights for robotic harvesting and yield estimation research.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-37"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2428713","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tomato harvesting in intelligent greenhouses is crucial for reducing costs and optimizing management. Agricultural robots, as an automated solution, require advanced visual perception. This study proposes a tomato detection and counting algorithm based on YOLOv8 (TCAttn-YOLOv8). To handle small, occluded tomato targets in images, a new detection layer (NDL) is added to the Neck and Head decoupled structure, improving small object recognition. The ColBlock, a dual-branch structure leveraging Transformer advantages, enhances feature extraction and fusion, focusing on densely targeted regions and minimizing small object feature loss in complex backgrounds. C2fGhost and GhostConv are integrated into the Neck network to reduce model parameters and floating-point operations, improving feature expression. The WIoU (Wise-IoU) loss function is adopted to accelerate convergence and increase regression accuracy. Experimental results show that TCAttn-YOLOv8 achieves an mAP@0.5 of 96.31%, with an FPS of 95 and a parameter size of 2.7 M, outperforming seven lightweight YOLO algorithms. For automated tomato counting, the R2 between predicted and actual counts is 0.9282, indicating the algorithm's suitability for replacing manual counting. This method effectively supports tomato detection and counting in intelligent greenhouses, offering valuable insights for robotic harvesting and yield estimation research.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.