Using machine learning to identify pediatric ophthalmologists.

IF 1.2 4区 医学 Q3 OPHTHALMOLOGY
Isdin Oke, Tobias Elze, Joan W Miller, Alice C Lorch, Mei-Sing Ong, Ann Chen Wu, David G Hunter
{"title":"Using machine learning to identify pediatric ophthalmologists.","authors":"Isdin Oke, Tobias Elze, Joan W Miller, Alice C Lorch, Mei-Sing Ong, Ann Chen Wu, David G Hunter","doi":"10.1016/j.jaapos.2024.104052","DOIUrl":null,"url":null,"abstract":"<p><p>This cross-sectional study used data from the American Academy of Ophthalmology IRIS Registry (Intelligent Research in Sight) and machine learning algorithms to identify pediatric ophthalmologists based on physician coding patterns. A random forest model achieved an area under the receiver operating characteristic curve of 0.98, sensitivity of 0.98, and specificity of 0.88 when classifying pediatric eye specialists in the test validation cohort. Algorithm-based approaches to identify pediatric ophthalmologists using procedure codes may offer new avenues to determine the scope, scale, and trajectory of pediatric eye care delivery.</p>","PeriodicalId":50261,"journal":{"name":"Journal of Aapos","volume":" ","pages":"104052"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aapos","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jaapos.2024.104052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This cross-sectional study used data from the American Academy of Ophthalmology IRIS Registry (Intelligent Research in Sight) and machine learning algorithms to identify pediatric ophthalmologists based on physician coding patterns. A random forest model achieved an area under the receiver operating characteristic curve of 0.98, sensitivity of 0.98, and specificity of 0.88 when classifying pediatric eye specialists in the test validation cohort. Algorithm-based approaches to identify pediatric ophthalmologists using procedure codes may offer new avenues to determine the scope, scale, and trajectory of pediatric eye care delivery.

利用机器学习识别儿科眼科医生。
这项横断面研究使用了美国眼科学会IRIS注册表(视力智能研究)的数据和机器学习算法,根据医生编码模式识别儿科眼科医生。随机森林模型对试验验证队列中的儿科眼科专家进行分类时,受试者工作特征曲线下面积为0.98,灵敏度为0.98,特异性为0.88。使用程序代码识别儿童眼科医生的基于算法的方法可能为确定儿童眼科护理交付的范围、规模和轨迹提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Aapos
Journal of Aapos 医学-小儿科
CiteScore
2.40
自引率
12.50%
发文量
159
审稿时长
55 days
期刊介绍: Journal of AAPOS presents expert information on children''s eye diseases and on strabismus as it affects all age groups. Major articles by leading experts in the field cover clinical and investigative studies, treatments, case reports, surgical techniques, descriptions of instrumentation, current concept reviews, and new diagnostic techniques. The Journal is the official publication of the American Association for Pediatric Ophthalmology and Strabismus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信