[Application of artificial intelligence methods in the diagnosis and treatment of primary angle-closure disease].

Q3 Medicine
N I Kurysheva, A L Pomerantsev, O Ye Rodionova, G A Sharova
{"title":"[Application of artificial intelligence methods in the diagnosis and treatment of primary angle-closure disease].","authors":"N I Kurysheva, A L Pomerantsev, O Ye Rodionova, G A Sharova","doi":"10.17116/oftalma2024140051130","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews literature on the use of artificial intelligence (AI) methods for the diagnosis and treatment of primary angle-closure disease (PACD). The review describes how AI techniques enhance the efficiency of population screening for anterior chamber angle closure, presents technologies utilizing deep learning, including neural networks, for the analysis of large datasets obtained through anterior segment imaging methods, such as anterior segment optical coherence tomography (AS-OCT), digital gonioscopy, and ultrasound biomicroscopy, and discusses methods for treating PACD with the help of AI. Integration of deep learning and imaging techniques represents a crucial step in optimizing the diagnosis and treatment of PACD, reducing the burden on the healthcare system.</p>","PeriodicalId":23529,"journal":{"name":"Vestnik oftalmologii","volume":"140 5","pages":"130-136"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik oftalmologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/oftalma2024140051130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This article reviews literature on the use of artificial intelligence (AI) methods for the diagnosis and treatment of primary angle-closure disease (PACD). The review describes how AI techniques enhance the efficiency of population screening for anterior chamber angle closure, presents technologies utilizing deep learning, including neural networks, for the analysis of large datasets obtained through anterior segment imaging methods, such as anterior segment optical coherence tomography (AS-OCT), digital gonioscopy, and ultrasound biomicroscopy, and discusses methods for treating PACD with the help of AI. Integration of deep learning and imaging techniques represents a crucial step in optimizing the diagnosis and treatment of PACD, reducing the burden on the healthcare system.

[人工智能方法在原发性闭角疾病诊治中的应用]。
本文综述了有关使用人工智能(AI)方法诊断和治疗原发性闭角疾病(PACD)的文献。综述介绍了人工智能技术如何提高前房角闭合人群筛查的效率,介绍了利用深度学习(包括神经网络)分析通过前段光学相干断层扫描(AS-OCT)、数字眼底镜和超声生物显微镜等前段成像方法获得的大型数据集的技术,并讨论了在人工智能帮助下治疗 PACD 的方法。深度学习与成像技术的结合是优化 PACD 诊断和治疗、减轻医疗系统负担的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vestnik oftalmologii
Vestnik oftalmologii Medicine-Ophthalmology
CiteScore
0.80
自引率
0.00%
发文量
129
期刊介绍: The journal publishes materials on the diagnosis and treatment of eye diseases, hygiene of vision, prevention of ophthalmic affections, history of Russian ophthalmology, organization of ophthalmological aid to the population, as well as the problems of special equipment. Original scientific articles and surveys on urgent problems of theory and practice of Russian and foreign ophthalmology are published. The journal contains book reviews on ophthalmology, information on the activities of ophthalmologists" scientific societies, chronicle of congresses and conferences.The journal is intended for ophthalmologists and scientific workers dealing with clinical problems of diseases of the eye and physiology of vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信