MoZn-based high entropy alloy catalysts enabled dual activation and stabilization in alkaline oxygen evolution

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yunjie Mei, Jinli Chen, Qi Wang, Yaqing Guo, Hanwen Liu, Wenhui Shi, Cheng Lin, Yifei Yuan, Yuhua Wang, Bao Yu Xia, Yonggang Yao
{"title":"MoZn-based high entropy alloy catalysts enabled dual activation and stabilization in alkaline oxygen evolution","authors":"Yunjie Mei,&nbsp;Jinli Chen,&nbsp;Qi Wang,&nbsp;Yaqing Guo,&nbsp;Hanwen Liu,&nbsp;Wenhui Shi,&nbsp;Cheng Lin,&nbsp;Yifei Yuan,&nbsp;Yuhua Wang,&nbsp;Bao Yu Xia,&nbsp;Yonggang Yao","doi":"10.1126/sciadv.adq6758","DOIUrl":null,"url":null,"abstract":"<div >It remains a grand challenge to develop electrocatalysts with simultaneously high activity, long durability, and low cost for the oxygen evolution reaction (OER), originating from two competing reaction pathways and often trade-off performances. The adsorbed evolution mechanism (AEM) suffers from sluggish kinetics due to a linear scaling relationship, while the lattice oxygen mechanism (LOM) causes unstable structures due to lattice oxygen escape. We propose a MoZnFeCoNi high-entropy alloy (HEA) incorporating AEM-promoter Mo and LOM-active Zn to achieve dual activation and stabilization for efficient and durable OER. Density functional theory and chemical probe experiments confirmed dual-mechanism activation, with representative Co-Co<sup>†</sup>-Mo sites facilitating AEM and Zn-O<sup>†</sup>-Ni sites enhancing LOM, resulting in an ultralow OER overpotential (η<sub>10</sub> = 221 mV). The multielement interaction, high-entropy structure, and carbon network notably enhance structural stability for durable catalysis (&gt;1500 hours at 100 mA cm<sup>−2</sup>). Our work offers a viable approach to concurrently enhance OER activity and stability by designing HEA catalysts to enable dual-mechanism synergy.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq6758","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq6758","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It remains a grand challenge to develop electrocatalysts with simultaneously high activity, long durability, and low cost for the oxygen evolution reaction (OER), originating from two competing reaction pathways and often trade-off performances. The adsorbed evolution mechanism (AEM) suffers from sluggish kinetics due to a linear scaling relationship, while the lattice oxygen mechanism (LOM) causes unstable structures due to lattice oxygen escape. We propose a MoZnFeCoNi high-entropy alloy (HEA) incorporating AEM-promoter Mo and LOM-active Zn to achieve dual activation and stabilization for efficient and durable OER. Density functional theory and chemical probe experiments confirmed dual-mechanism activation, with representative Co-Co-Mo sites facilitating AEM and Zn-O-Ni sites enhancing LOM, resulting in an ultralow OER overpotential (η10 = 221 mV). The multielement interaction, high-entropy structure, and carbon network notably enhance structural stability for durable catalysis (>1500 hours at 100 mA cm−2). Our work offers a viable approach to concurrently enhance OER activity and stability by designing HEA catalysts to enable dual-mechanism synergy.
MoZn基高熵合金催化剂在碱性氧进化过程中实现了双重活化和稳定。
氧进化反应(OER)有两种相互竞争的反应途径,通常需要权衡性能,因此开发同时具有高活性、长耐久性和低成本的电催化剂仍然是一项巨大的挑战。吸附进化机制(AEM)因线性比例关系而导致动力学缓慢,而晶格氧机制(LOM)则因晶格氧逸出而导致结构不稳定。我们提出了一种锰铁钴镍(MoZnFeCoNi)高熵合金(HEA),该合金结合了 AEM 促进剂 Mo 和 LOM 活性 Zn,实现了双重激活和稳定,从而获得高效持久的 OER。密度泛函理论和化学探针实验证实了双机制活化,具有代表性的 Co-Co†-Mo 位点促进了 AEM,而 Zn-O†-Ni 位点增强了 LOM,从而实现了超低的 OER 过电位(η10 = 221 mV)。多元素相互作用、高熵结构和碳网络显著增强了结构稳定性,从而实现了持久催化(在 100 mA cm-2 条件下大于 1500 小时)。我们的工作提供了一种可行的方法,通过设计 HEA 催化剂来实现双机制协同作用,从而同时提高 OER 的活性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信