{"title":"Alginate-gelatin hydrogel promotes the neurogenic differentiation potential of bone marrow CD117<sup>+</sup> hematopoietic stem cells.","authors":"Jinshan Peng","doi":"10.1016/j.reth.2024.10.009","DOIUrl":null,"url":null,"abstract":"<p><p>People still hold the concept of using cell-based treatments to regenerate missing neurons in high esteem. CD117<sup>+</sup> cells are considered favorable stem cells for regenerative medicine. The objective of this research was to examine the impact of Alginate-Gelatin (Alg-Gel) hydrogel on the process of neurogenic differentiation of CD117<sup>+</sup> cells utilizing a cytokines secretion test conducted in a laboratory setting. To achieve this objective, bone marrow-CD117<sup>+</sup> cells were isolated using the MACS technique and then transformed into neuron cells using a neurogenic differentiation medium. The characterization of enriched CD117<sup>+</sup> cells has been done with flow cytometry as well as immunocytochemistry. Next, the cells underwent western blotting assay to evaluate the signaling pathways. Subsequently, the culture media was obtained from both groups in order to determine cytokine levels. The study revealed that the Alg-Gel hydrogel had a notable impact on enhancing the protein expression of neuron markers such as β-tubulin and Wnt/catenin signaling pathway components in CD117<sup>+</sup> neurogenic differentiated cells. Furthermore, the cultured medium from the experimental group exhibited a notable abundance of IL-6 and IL-10 in comparison to the control group. The observed <i>in vitro</i> effects of Alg-Gel hydrogel on neurogenic differentiation of CD117<sup>+</sup> cells are likely to be caused by the cytokines that are released.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1030-1036"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.reth.2024.10.009","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
People still hold the concept of using cell-based treatments to regenerate missing neurons in high esteem. CD117+ cells are considered favorable stem cells for regenerative medicine. The objective of this research was to examine the impact of Alginate-Gelatin (Alg-Gel) hydrogel on the process of neurogenic differentiation of CD117+ cells utilizing a cytokines secretion test conducted in a laboratory setting. To achieve this objective, bone marrow-CD117+ cells were isolated using the MACS technique and then transformed into neuron cells using a neurogenic differentiation medium. The characterization of enriched CD117+ cells has been done with flow cytometry as well as immunocytochemistry. Next, the cells underwent western blotting assay to evaluate the signaling pathways. Subsequently, the culture media was obtained from both groups in order to determine cytokine levels. The study revealed that the Alg-Gel hydrogel had a notable impact on enhancing the protein expression of neuron markers such as β-tubulin and Wnt/catenin signaling pathway components in CD117+ neurogenic differentiated cells. Furthermore, the cultured medium from the experimental group exhibited a notable abundance of IL-6 and IL-10 in comparison to the control group. The observed in vitro effects of Alg-Gel hydrogel on neurogenic differentiation of CD117+ cells are likely to be caused by the cytokines that are released.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.