A continuous pursuit dataset for online deep learning-based EEG brain-computer interface.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dylan Forenzo, Hao Zhu, Bin He
{"title":"A continuous pursuit dataset for online deep learning-based EEG brain-computer interface.","authors":"Dylan Forenzo, Hao Zhu, Bin He","doi":"10.1038/s41597-024-04090-6","DOIUrl":null,"url":null,"abstract":"<p><p>This dataset is from an EEG brain-computer interface (BCI) study investigating the use of deep learning (DL) for online continuous pursuit (CP) BCI. In this task, subjects use Motor Imagery (MI) to control a cursor to follow a randomly moving target, instead of a single stationary target used in other traditional BCI tasks. DL methods have recently achieved promising performance in traditional BCI tasks, but most studies investigate offline data analysis using DL algorithms. This dataset consists of ~168 hours of EEG recordings from complex CP BCI experiments, collected from 28 unique human subjects over multiple sessions each, with an online DL-based decoder. The large amount of subject specific data from multiple sessions may be useful for developing new BCI decoders, especially DL methods that require large amounts of training data. By providing this dataset to the public, we hope to help facilitate the development of new or improved BCI decoding algorithms for the complex CP paradigm for continuous object control, bringing EEG-based BCIs closer to real-world applications.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1256"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04090-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This dataset is from an EEG brain-computer interface (BCI) study investigating the use of deep learning (DL) for online continuous pursuit (CP) BCI. In this task, subjects use Motor Imagery (MI) to control a cursor to follow a randomly moving target, instead of a single stationary target used in other traditional BCI tasks. DL methods have recently achieved promising performance in traditional BCI tasks, but most studies investigate offline data analysis using DL algorithms. This dataset consists of ~168 hours of EEG recordings from complex CP BCI experiments, collected from 28 unique human subjects over multiple sessions each, with an online DL-based decoder. The large amount of subject specific data from multiple sessions may be useful for developing new BCI decoders, especially DL methods that require large amounts of training data. By providing this dataset to the public, we hope to help facilitate the development of new or improved BCI decoding algorithms for the complex CP paradigm for continuous object control, bringing EEG-based BCIs closer to real-world applications.

基于在线深度学习的脑电图脑机接口的连续追踪数据集。
该数据集来自一项脑电图脑机接口(BCI)研究,该研究调查了深度学习(DL)在在线连续追随(CP)BCI 中的应用。在这项任务中,受试者使用运动想象(MI)控制光标追随随机移动的目标,而不是其他传统 BCI 任务中使用的单一静止目标。最近,DL 方法在传统 BCI 任务中取得了可喜的成绩,但大多数研究都在研究使用 DL 算法进行离线数据分析。该数据集由来自复杂 CP BCI 实验的约 168 个小时的脑电图记录组成,这些记录来自 28 个不同的人类受试者,每个受试者在多个会话中使用基于 DL 的在线解码器。来自多个会话的大量特定受试者数据可能有助于开发新的 BCI 解码器,尤其是需要大量训练数据的 DL 方法。通过向公众提供该数据集,我们希望能帮助促进针对复杂的 CP 范例开发新的或改进的 BCI 解码算法,从而使基于脑电图的 BCI 更接近真实世界的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信