{"title":"Time-resolved MR fingerprinting for T2* signal extraction: MR fingerprinting meets echo planar time-resolved imaging","authors":"Di Cui, Xiaoxi Liu, Peder E. Z. Larson, Duan Xu","doi":"10.1002/mrm.30381","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study leverages the echo planar time-resolved imaging (EPTI) concept in MR fingerprinting (MRF) framework for a new time-resolved MRF (TRMRF) approach, and explores its capability for fast simultaneous quantification of multiple MR parameters including T<sub>1</sub>, T<sub>2</sub>, T<sub>2</sub>*, proton density, off resonance, and B<sub>1</sub><sup>+</sup>.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The proposed TRMRF method uses the concept of EPTI to track the signal change along the EPI echo train for T<sub>2</sub>* weighting with a k-t Poisson-based sampling order designed for acquisition. A two-dimensional decomposition algorithm was designed for the image reconstruction, enabling fast and precise subspace modeling. The accuracy of proposed method was evaluated by a T<sub>1</sub>/T<sub>2</sub> phantom. The feasibility was demonstrated through 5 healthy volunteer brain studies.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In the phantom studies, T<sub>1</sub>, T<sub>2</sub>, and T<sub>2</sub>* maps of TRMRF correlated strongly with gold-standard methods. The concordance correlation coefficients are 0.9999, 0.9984 and 0.9978, and R<sup>2</sup>s are 0.9998, 0.9971, and 0.9983. In the in vivo studies, quantitative maps were acquired with 5 healthy volunteers. TRMRF was demonstrated to have comparable results with spiral MRF and gradient-echo EPTI. TRMRF scans using 16, 10, and 6 s per slice were also evaluated to demonstrate the capability of shorter scan times.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>A new approach is proposed to exploit the advantage of EPTI in the MRF framework. We demonstrate in phantom and in vivo experiments that T<sub>1</sub>, T<sub>2</sub>, T<sub>2</sub>*, proton density, off resonance, and B<sub>1</sub><sup>+</sup> can be simultaneously quantified within 6 s/slice by TRMRF.</p>\n </section>\n </div>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":"93 4","pages":"1751-1760"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrm.30381","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study leverages the echo planar time-resolved imaging (EPTI) concept in MR fingerprinting (MRF) framework for a new time-resolved MRF (TRMRF) approach, and explores its capability for fast simultaneous quantification of multiple MR parameters including T1, T2, T2*, proton density, off resonance, and B1+.
Methods
The proposed TRMRF method uses the concept of EPTI to track the signal change along the EPI echo train for T2* weighting with a k-t Poisson-based sampling order designed for acquisition. A two-dimensional decomposition algorithm was designed for the image reconstruction, enabling fast and precise subspace modeling. The accuracy of proposed method was evaluated by a T1/T2 phantom. The feasibility was demonstrated through 5 healthy volunteer brain studies.
Results
In the phantom studies, T1, T2, and T2* maps of TRMRF correlated strongly with gold-standard methods. The concordance correlation coefficients are 0.9999, 0.9984 and 0.9978, and R2s are 0.9998, 0.9971, and 0.9983. In the in vivo studies, quantitative maps were acquired with 5 healthy volunteers. TRMRF was demonstrated to have comparable results with spiral MRF and gradient-echo EPTI. TRMRF scans using 16, 10, and 6 s per slice were also evaluated to demonstrate the capability of shorter scan times.
Conclusion
A new approach is proposed to exploit the advantage of EPTI in the MRF framework. We demonstrate in phantom and in vivo experiments that T1, T2, T2*, proton density, off resonance, and B1+ can be simultaneously quantified within 6 s/slice by TRMRF.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.