Topological Fermiology of gate-tunable Rashba electron gases

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jie Hu, Ze-Zheng Fang, Feng Sheng, Chenqiang Hua, Chuanying Xi, Guangli Kuang, Li Pi, Kenji Watanabe, Takashi Taniguchi, Qing-Lin Xia, Yi Zheng
{"title":"Topological Fermiology of gate-tunable Rashba electron gases","authors":"Jie Hu,&nbsp;Ze-Zheng Fang,&nbsp;Feng Sheng,&nbsp;Chenqiang Hua,&nbsp;Chuanying Xi,&nbsp;Guangli Kuang,&nbsp;Li Pi,&nbsp;Kenji Watanabe,&nbsp;Takashi Taniguchi,&nbsp;Qing-Lin Xia,&nbsp;Yi Zheng","doi":"10.1126/sciadv.adp8208","DOIUrl":null,"url":null,"abstract":"<div >By introducing first-order quantum phases as topological invariants, recent symmetry analysis–based theories have reinvigorated magnetic quantum oscillations as a versatile quantum probe for unfolding the Fermi surface topology along with the geometry information, i.e., topo-Fermiology. Here, we demonstrate the comprehensive topo-Fermiology of high-mobility Rashba two-dimensional electron gases with ultragate tunability of spin-orbit coupling parameter in few-layer black arsenic. The remarkable consistencies with the key theoretical predictions of period doubling in quantum oscillations, gate-tunable aperiodic beating patterns, and the symmetry-enforced Landau level crossing phenomena controlled by the competition between Rashba coupling and the Zeeman interaction, which ultimately manifests as all odd-filling factor integer quantum Hall effect with superb sensitivity to quantum phases, establish topo-Fermiology as an indispensable methodology for studying topological quantum matters.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp8208","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

By introducing first-order quantum phases as topological invariants, recent symmetry analysis–based theories have reinvigorated magnetic quantum oscillations as a versatile quantum probe for unfolding the Fermi surface topology along with the geometry information, i.e., topo-Fermiology. Here, we demonstrate the comprehensive topo-Fermiology of high-mobility Rashba two-dimensional electron gases with ultragate tunability of spin-orbit coupling parameter in few-layer black arsenic. The remarkable consistencies with the key theoretical predictions of period doubling in quantum oscillations, gate-tunable aperiodic beating patterns, and the symmetry-enforced Landau level crossing phenomena controlled by the competition between Rashba coupling and the Zeeman interaction, which ultimately manifests as all odd-filling factor integer quantum Hall effect with superb sensitivity to quantum phases, establish topo-Fermiology as an indispensable methodology for studying topological quantum matters.
门可调谐拉什巴电子气体的拓扑费米学。
通过引入一阶量子相作为拓扑不变式,最近基于对称性分析的理论为磁量子振荡注入了新的活力,磁量子振荡是一种多功能的量子探针,可用于展开费米面拓扑和几何信息,即拓扑费米学。在这里,我们展示了在少层黑砷中具有自旋轨道耦合参数超门限可调性的高迁移率拉什巴二维电子气的全面拓扑费米学。拓扑费米学与量子振荡周期倍增、门调谐非周期性跳动模式、由拉什巴耦合和泽曼相互作用竞争控制的对称性强化朗道水平跨越现象等关键理论预测惊人地一致,最终表现为对量子相具有极高灵敏度的全奇填充因子整数量子霍尔效应,从而确立了拓扑费米学作为研究拓扑量子问题不可或缺的方法论的地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信