Structure of the human TSC:WIPI3 lysosomal recruitment complex.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2024-11-22 Epub Date: 2024-11-20 DOI:10.1126/sciadv.adr5807
Charles Bayly-Jones, Christopher J Lupton, Laura D'Andrea, Yong-Gang Chang, Gareth D Jones, Joel R Steele, Hari Venugopal, Ralf B Schittenhelm, Michelle L Halls, Andrew M Ellisdon
{"title":"Structure of the human TSC:WIPI3 lysosomal recruitment complex.","authors":"Charles Bayly-Jones, Christopher J Lupton, Laura D'Andrea, Yong-Gang Chang, Gareth D Jones, Joel R Steele, Hari Venugopal, Ralf B Schittenhelm, Michelle L Halls, Andrew M Ellisdon","doi":"10.1126/sciadv.adr5807","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberous sclerosis complex (TSC) is targeted to the lysosomal membrane, where it hydrolyzes RAS homolog-mTORC1 binding (RHEB) from its GTP-bound to GDP-bound state, inhibiting mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in TSC cause TSC disease, marked by excessive tumor growth. Here, we overcome a high degree of continuous conformational heterogeneity to determine the 2.8-Å cryo-electron microscopy (cryo-EM) structure of the complete human TSC in complex with the lysosomal recruitment factor WD repeat domain phosphoinositide-interacting protein 3 (WIPI3). We discover a previously undetected amino-terminal TSC1 HEAT repeat dimer that clamps onto a single TSC wing and forms a phosphatidylinositol phosphate (PIP)-binding pocket, which specifically binds monophosphorylated PIPs. These structural advances provide a model by which WIPI3 and PIP-signaling networks coordinate to recruit TSC to the lysosomal membrane to inhibit mTORC1. The high-resolution TSC structure reveals previously unrecognized mutational hotspots and uncovers crucial insights into the mechanisms of TSC dysregulation in disease.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":"eadr5807"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr5807","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberous sclerosis complex (TSC) is targeted to the lysosomal membrane, where it hydrolyzes RAS homolog-mTORC1 binding (RHEB) from its GTP-bound to GDP-bound state, inhibiting mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in TSC cause TSC disease, marked by excessive tumor growth. Here, we overcome a high degree of continuous conformational heterogeneity to determine the 2.8-Å cryo-electron microscopy (cryo-EM) structure of the complete human TSC in complex with the lysosomal recruitment factor WD repeat domain phosphoinositide-interacting protein 3 (WIPI3). We discover a previously undetected amino-terminal TSC1 HEAT repeat dimer that clamps onto a single TSC wing and forms a phosphatidylinositol phosphate (PIP)-binding pocket, which specifically binds monophosphorylated PIPs. These structural advances provide a model by which WIPI3 and PIP-signaling networks coordinate to recruit TSC to the lysosomal membrane to inhibit mTORC1. The high-resolution TSC structure reveals previously unrecognized mutational hotspots and uncovers crucial insights into the mechanisms of TSC dysregulation in disease.

人类 TSC:WIPI3 溶酶体招募复合物的结构。
结节性硬化症复合体(TSC)靶向溶酶体膜,它在溶酶体膜上将 RAS 同源物-mTORC1 结合(RHEB)从 GTP 结合态水解为 GDP 结合态,从而抑制雷帕霉素复合体 1(mTORC1)的机制靶标。TSC功能缺失突变会导致以肿瘤过度生长为特征的TSC疾病。在这里,我们克服了连续构象的高度异质性,确定了完整的人类 TSC 与溶酶体招募因子 WD 重复结构域磷酸肌醇互作蛋白 3(WIPI3)复合物的 2.8 埃冷冻电镜(cryo-EM)结构。我们发现了一个以前未发现的氨基末端 TSC1 HEAT 重复二聚体,它夹在单个 TSC 翼上并形成一个磷脂酰肌醇磷酸(PIP)结合袋,该结合袋专门结合单磷酸化 PIP。这些结构上的进展提供了一个模型,通过该模型,WIPI3 和 PIP 信号网络协调招募 TSC 到溶酶体膜上以抑制 mTORC1。高分辨率的TSC结构揭示了以前未曾认识到的突变热点,并揭示了TSC在疾病中失调机制的重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信