Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation.
{"title":"Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation.","authors":"Susmita Yadav, Suraj N Mali, Anima Pandey","doi":"10.1007/s12011-024-04446-4","DOIUrl":null,"url":null,"abstract":"<p><p>Peptic ulcers, affecting approximately 10% of the global population, can result from factors such as stress, alcohol use, smoking, NSAIDs, Helicobacter pylori infection, and genetic predisposition. Plant-based medicines are gaining recognition for their therapeutic potential, including in the treatment of peptic ulcers. Green chemistry methods for the biological synthesis of nanoparticles (NPs) provide a sustainable alternative to traditional chemical techniques. These nanoparticles, particularly metallic NPs and metal oxides synthesized from plant extracts, offer promising anti-ulcer properties. This review highlights research from 2000 to 2024 on the use of green-synthesized nanoparticles and their role in peptic ulcer treatment, focusing on their therapeutic mechanisms and potential benefits. For this purpose, an electronic search of published research and review articles was conducted in PubMed, Scopus, Science Direct, Cochrane databases, and Google Scholar.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04446-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peptic ulcers, affecting approximately 10% of the global population, can result from factors such as stress, alcohol use, smoking, NSAIDs, Helicobacter pylori infection, and genetic predisposition. Plant-based medicines are gaining recognition for their therapeutic potential, including in the treatment of peptic ulcers. Green chemistry methods for the biological synthesis of nanoparticles (NPs) provide a sustainable alternative to traditional chemical techniques. These nanoparticles, particularly metallic NPs and metal oxides synthesized from plant extracts, offer promising anti-ulcer properties. This review highlights research from 2000 to 2024 on the use of green-synthesized nanoparticles and their role in peptic ulcer treatment, focusing on their therapeutic mechanisms and potential benefits. For this purpose, an electronic search of published research and review articles was conducted in PubMed, Scopus, Science Direct, Cochrane databases, and Google Scholar.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.