Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.
{"title":"Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.","authors":"Ryuji Takada, Hiroyuki Okada, Kotaro Narimatsu, Koji Miyake, Yoshiaki Uchida, Etsushi Tsuji, Norikazu Nishiyama","doi":"10.1002/cssc.202402249","DOIUrl":null,"url":null,"abstract":"<p><p>Electroreduction of carbon dioxide into value-added fine chemicals is a promising technique to realize the carbon cycle. Recently, metal-free heteroatom doped carbons are proposed as promising cost-effective electrocatalysts for CO2 reduction reaction (CO2RR). However, the lack of understanding of the active site prevents the realization of a high-performance electrocatalyst for the CO2RR. Herein, we synthesized metal-free N, P co-doped carbons (NPCs) for producing syngas, which is composed of H2 and CO, by CO2 electrolysis using inexpensive bio-based raw materials via simple pyrolysis. The syngas ratio (H2/CO) can be controlled within the high demand range (0.3-4) at low potentials using NPCs by tuning the N and P contents. In comparison with only N doping or P doping, N and P co-doping has a positive impact on improving CO2RR activity. Experimental analysis and density functional theoretical (DFT) calculations revealed that negatively charged C atoms adjacent to N and P atoms are the most favorable active sites for CO2-to-CO conversion compared to pyridinic N on N, P co-doped carbon. Introducing N atoms generates the preferable CO2 adsorption site, and P atoms contribute to decreasing the Gibbs free energy barrier for key *COOH intermediates adsorbed on the negatively charged C atoms.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402249"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402249","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroreduction of carbon dioxide into value-added fine chemicals is a promising technique to realize the carbon cycle. Recently, metal-free heteroatom doped carbons are proposed as promising cost-effective electrocatalysts for CO2 reduction reaction (CO2RR). However, the lack of understanding of the active site prevents the realization of a high-performance electrocatalyst for the CO2RR. Herein, we synthesized metal-free N, P co-doped carbons (NPCs) for producing syngas, which is composed of H2 and CO, by CO2 electrolysis using inexpensive bio-based raw materials via simple pyrolysis. The syngas ratio (H2/CO) can be controlled within the high demand range (0.3-4) at low potentials using NPCs by tuning the N and P contents. In comparison with only N doping or P doping, N and P co-doping has a positive impact on improving CO2RR activity. Experimental analysis and density functional theoretical (DFT) calculations revealed that negatively charged C atoms adjacent to N and P atoms are the most favorable active sites for CO2-to-CO conversion compared to pyridinic N on N, P co-doped carbon. Introducing N atoms generates the preferable CO2 adsorption site, and P atoms contribute to decreasing the Gibbs free energy barrier for key *COOH intermediates adsorbed on the negatively charged C atoms.
将二氧化碳电还原成高附加值精细化学品是实现碳循环的一项前景广阔的技术。最近,无金属杂原子掺杂碳被提出作为二氧化碳还原反应(CO2RR)的经济有效的电催化剂。然而,由于缺乏对活性位点的了解,阻碍了高性能 CO2RR 电催化剂的实现。在此,我们合成了无金属 N、P 共掺杂碳(NPCs),利用廉价的生物基原料,通过简单的热解,利用 CO2 电解产生由 H2 和 CO 组成的合成气。通过调整 N 和 P 的含量,NPC 可在低电位时将合成气比例(H2/CO)控制在高需求范围(0.3-4)内。与只掺杂 N 或 P 相比,N 和 P 共掺杂对提高 CO2RR 活性有积极影响。实验分析和密度泛函理论(DFT)计算显示,与 N、P 共掺杂碳上的吡啶 N 相比,邻近 N 原子和 P 原子的带负电的 C 原子是 CO2 转化为 CO 的最有利活性位点。N 原子的引入产生了更有利的 CO2 吸附位点,而 P 原子则有助于降低吸附在带负电的 C 原子上的关键 *COOH 中间产物的吉布斯自由能垒。
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology