High-Entropy Metal Sulfide Promises High-Performance Carbon Dioxide Reduction.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lei Gong, Weining Zhang, Yan Zhuang, Kaiyue Zhang, Qiuyu Zhao, Dongdong Xiao, Shuo Liu, Zhiwei Liu, Yongzheng Zhang
{"title":"High-Entropy Metal Sulfide Promises High-Performance Carbon Dioxide Reduction.","authors":"Lei Gong, Weining Zhang, Yan Zhuang, Kaiyue Zhang, Qiuyu Zhao, Dongdong Xiao, Shuo Liu, Zhiwei Liu, Yongzheng Zhang","doi":"10.1021/acsami.4c16847","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient conversion of carbon dioxide (CO<sub>2</sub>) requires the development of stable catalysts with high selectivity and reactivity within a wide potential range. Here, the high-entropy metal sulfide CuAgZnSnS<sub>4</sub> is designed for CO<sub>2</sub> reduction with excellent performance (FE<sub>carbon products</sub> ≥ 90%) in whole test potential windows (600 mV) based on the synergistic effect of the high-entropy metal sulfide. In particular, CuAgZnSnS<sub>4</sub> exhibits better single-product selectivity with the highest FE<sub>HCOOH</sub>/FE<sub>CO</sub> value (29.03) at -1.28 versus reversible hydrogen electrode (RHE). In combination with <i>in situ</i> measurements and theoretical calculations, it is further revealed that the synergistic effect of CuAgZnSnS<sub>4</sub> realizes the controllable regulation of the surface electronic structure at Sn active sites, strengthening orbital interactions between *OCHO and Sn active sites. As a result, the effective adsorption and activation of *OCHO instead of *H are obtained, improving the single-product selectivity of electrocatalytic CO<sub>2</sub> reduction and inhibiting the competitive hydrogen evolution reaction significantly. Our findings may complete the understanding of the synergistic effect for high-entropy materials in catalysis and offer new insight into the design of efficient electrocatalysts with high catalytic activity.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16847","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient conversion of carbon dioxide (CO2) requires the development of stable catalysts with high selectivity and reactivity within a wide potential range. Here, the high-entropy metal sulfide CuAgZnSnS4 is designed for CO2 reduction with excellent performance (FEcarbon products ≥ 90%) in whole test potential windows (600 mV) based on the synergistic effect of the high-entropy metal sulfide. In particular, CuAgZnSnS4 exhibits better single-product selectivity with the highest FEHCOOH/FECO value (29.03) at -1.28 versus reversible hydrogen electrode (RHE). In combination with in situ measurements and theoretical calculations, it is further revealed that the synergistic effect of CuAgZnSnS4 realizes the controllable regulation of the surface electronic structure at Sn active sites, strengthening orbital interactions between *OCHO and Sn active sites. As a result, the effective adsorption and activation of *OCHO instead of *H are obtained, improving the single-product selectivity of electrocatalytic CO2 reduction and inhibiting the competitive hydrogen evolution reaction significantly. Our findings may complete the understanding of the synergistic effect for high-entropy materials in catalysis and offer new insight into the design of efficient electrocatalysts with high catalytic activity.

Abstract Image

高熵金属硫化物有望实现高性能二氧化碳还原。
二氧化碳(CO2)的高效转化需要开发在宽电位范围内具有高选择性和高反应活性的稳定催化剂。在此,基于高熵金属硫化物的协同效应,设计了用于二氧化碳还原的高熵金属硫化物 CuAgZnSnS4,该催化剂在整个测试电位窗口(600 mV)内具有优异的性能(FEcarbon 产物≥ 90%)。特别是,与可逆氢电极(RHE)相比,CuAgZnSnS4 在-1.28 时具有最高的 FEHCOOH/FECO 值(29.03),表现出更好的单产物选择性。结合现场测量和理论计算,进一步发现 CuAgZnSnS4 的协同效应实现了对锡活性位点表面电子结构的可控调节,加强了 *OCHO 与锡活性位点之间的轨道相互作用。结果,*OCHO 代替*H 被有效吸附和活化,提高了电催化 CO2 还原的单产物选择性,并显著抑制了竞争性氢进化反应。我们的发现可能会完善人们对催化中高熵材料协同效应的理解,并为设计具有高催化活性的高效电催化剂提供新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信