Mechanics-Photophysics Correlation in Tough, Stretchable and Long-Lived Room Temperature Phosphorescence Ionogels Deciphered by Dynamic Mechanical Analysis.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xipeng Yang, Ningyan Li, Binbin Wang, Panyi Chen, Song Ma, Yifan Deng, Shaoyu Lü, Yu Tang
{"title":"Mechanics-Photophysics Correlation in Tough, Stretchable and Long-Lived Room Temperature Phosphorescence Ionogels Deciphered by Dynamic Mechanical Analysis.","authors":"Xipeng Yang, Ningyan Li, Binbin Wang, Panyi Chen, Song Ma, Yifan Deng, Shaoyu Lü, Yu Tang","doi":"10.1002/anie.202419114","DOIUrl":null,"url":null,"abstract":"<p><p>The development of tough, stretchable and long-lived room temperature phosphorescence (RTP) materials holds great significance for manufacturing and processing photoluminescent materials, but limited techniques are available to profile their mechanics-photophysics correlation. Here we report glassy ionogels, and their mechanical properties and photophysical properties are fused by dynamic mechanical analysis (DMA), functioning like a human brain that perceives a material instantaneously by linking sensory perception and cognition. Depending on two special temperatures presented in DMA curves, T<sub>loss</sub> (the peak of loss modulus (E\")) and T<sub>g</sub> (glass transition temperature), the ionogels can vary from being either tough with persistent phosphorescence, extensible with effective phosphorescence or resilience with inefficient phosphorescence. Leveraging this method, we achieve stretchable and long-lived RTP ionogels with tensile yield strength of 53 MPa, tensile strain of 497 %, Young's modulus of 782 MPa, toughness of 111.2 MJ/m<sup>3</sup>, and lifetime of 113.05 ms. Our work provides a simple yet powerful method to reveal the mechanics-photophysics correlation of RTP ionogels, to predict their performance without laborious synthesis and characterization, opening new avenues for applications of RTP materials, including applications in harsh conditions (257 K or 347 K), shape memory and shape reconstruction.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202419114"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419114","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of tough, stretchable and long-lived room temperature phosphorescence (RTP) materials holds great significance for manufacturing and processing photoluminescent materials, but limited techniques are available to profile their mechanics-photophysics correlation. Here we report glassy ionogels, and their mechanical properties and photophysical properties are fused by dynamic mechanical analysis (DMA), functioning like a human brain that perceives a material instantaneously by linking sensory perception and cognition. Depending on two special temperatures presented in DMA curves, Tloss (the peak of loss modulus (E")) and Tg (glass transition temperature), the ionogels can vary from being either tough with persistent phosphorescence, extensible with effective phosphorescence or resilience with inefficient phosphorescence. Leveraging this method, we achieve stretchable and long-lived RTP ionogels with tensile yield strength of 53 MPa, tensile strain of 497 %, Young's modulus of 782 MPa, toughness of 111.2 MJ/m3, and lifetime of 113.05 ms. Our work provides a simple yet powerful method to reveal the mechanics-photophysics correlation of RTP ionogels, to predict their performance without laborious synthesis and characterization, opening new avenues for applications of RTP materials, including applications in harsh conditions (257 K or 347 K), shape memory and shape reconstruction.

通过动态力学分析破解坚韧、可拉伸和长寿命室温磷光离子凝胶中的力学-光物理相关性。
开发坚韧、可拉伸和长寿命的室温磷光(RTP)材料对制造和加工光致发光材料具有重要意义,但目前用于分析其力学-光物理相关性的技术有限。在此,我们报告了玻璃状离子凝胶,并通过动态力学分析(DMA)融合了它们的力学性能和光物理性能,其功能就像人脑一样,通过连接感官感知和认知,瞬间感知材料。根据 DMA 曲线中的两个特殊温度 Tloss(损耗模量(E")的峰值)和 Tg(玻璃化转变温度),离子凝胶既可以是具有持久磷光的坚韧材料,也可以是具有有效磷光的可延展材料,还可以是具有低效磷光的弹性材料。利用这种方法,我们获得了拉伸屈服强度为 53 兆帕、拉伸应变为 497%、杨氏模量为 782 兆帕、韧性为 111.2 兆焦耳/立方米、寿命为 113.05 毫秒的可拉伸长寿命 RTP 离子凝胶。我们的工作提供了一种简单而强大的方法来揭示 RTP 离子凝胶的力学-光物理相关性,无需费力合成和表征即可预测其性能,为 RTP 材料的应用开辟了新途径,包括在苛刻条件(257 K 或 347 K)下的应用、形状记忆和形状重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信