γ-Secretase Cleaves Bifunctional Fatty Acid-Conjugated Small Molecules with Amide Bonds in Mammalian Cells.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Biology Pub Date : 2024-12-20 Epub Date: 2024-11-20 DOI:10.1021/acschembio.4c00432
Kai Tahara, Akinobu Nakamura, Xiaotong Wang, Keishi Mitamura, Yuki Ichihashi, Keiko Kano, Emi Mishiro-Sato, Kazuhiro Aoki, Yasuteru Urano, Toru Komatsu, Shinya Tsukiji
{"title":"γ-Secretase Cleaves Bifunctional Fatty Acid-Conjugated Small Molecules with Amide Bonds in Mammalian Cells.","authors":"Kai Tahara, Akinobu Nakamura, Xiaotong Wang, Keishi Mitamura, Yuki Ichihashi, Keiko Kano, Emi Mishiro-Sato, Kazuhiro Aoki, Yasuteru Urano, Toru Komatsu, Shinya Tsukiji","doi":"10.1021/acschembio.4c00432","DOIUrl":null,"url":null,"abstract":"<p><p>Connecting two small molecules, such as ligands, fluorophores, or lipids, together via a linker with amide bonds is a widely used strategy to generate synthetic bifunctional molecules for various biological and biomedical applications. Such bifunctional molecules have been used in live-cell experiments under the assumption that they should be stable in cells. However, we recently found that a membrane-targeting bifunctional molecule, composed of a lipopeptide and the small-molecule ligand trimethoprim, referred to as mgcTMP, underwent amide-bond cleavage in mammalian cells. In this work, we first identified γ-secretase as the major protease degrading mgcTMP in cells. We next investigated the intracellular degradation of several different types of amide-linked bifunctional compounds and found that <i>N</i>-terminally fatty acid-conjugated small molecules are susceptible to γ-secretase-mediated amide-bond cleavage. In contrast, amide-linked bifunctional molecules composed of two small molecules, such as ligands and hydrophobic groups, which lack lipid modification, did not undergo intracellular degradation. These findings highlight a previously overlooked consideration for the development and application of lipid-based bifunctional molecules in chemical biology research.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2438-2450"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00432","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Connecting two small molecules, such as ligands, fluorophores, or lipids, together via a linker with amide bonds is a widely used strategy to generate synthetic bifunctional molecules for various biological and biomedical applications. Such bifunctional molecules have been used in live-cell experiments under the assumption that they should be stable in cells. However, we recently found that a membrane-targeting bifunctional molecule, composed of a lipopeptide and the small-molecule ligand trimethoprim, referred to as mgcTMP, underwent amide-bond cleavage in mammalian cells. In this work, we first identified γ-secretase as the major protease degrading mgcTMP in cells. We next investigated the intracellular degradation of several different types of amide-linked bifunctional compounds and found that N-terminally fatty acid-conjugated small molecules are susceptible to γ-secretase-mediated amide-bond cleavage. In contrast, amide-linked bifunctional molecules composed of two small molecules, such as ligands and hydrophobic groups, which lack lipid modification, did not undergo intracellular degradation. These findings highlight a previously overlooked consideration for the development and application of lipid-based bifunctional molecules in chemical biology research.

γ-分泌酶在哺乳动物细胞中分解带有酰胺键的双功能脂肪酸共轭小分子
将配体、荧光团或脂质等两种小分子通过带有酰胺键的连接体连接在一起是一种广泛使用的策略,可生成合成双功能分子,用于各种生物和生物医学应用。这种双功能分子一直被用于活细胞实验,前提是它们在细胞中应该是稳定的。然而,我们最近发现,一种由脂肽和小分子配体三甲氧苄啶(简称 mgcTMP)组成的膜靶向双功能分子在哺乳动物细胞中会发生酰胺键裂解。在这项研究中,我们首先确定了γ-分泌酶是降解细胞内mgcTMP的主要蛋白酶。接下来,我们研究了几种不同类型的酰胺键双功能化合物在细胞内的降解情况,发现N端脂肪酸结合的小分子容易被γ-分泌酶介导的酰胺键裂解。相比之下,由配体和疏水基团等两种小分子组成的酰胺键双功能分子缺乏脂质修饰,不会在细胞内降解。这些发现凸显了在化学生物学研究中开发和应用基于脂质的双功能分子时一个以前被忽视的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信