Ping Guan, Shuaixin Wu, Haoyan Meng, Zhenya Li, Mengru Liu, Yuping An, Yingliang Liu, Shengang Xu, Shaokui Cao
{"title":"Outstanding Stability and Resistive Switching Performance through Octa-Amino-Polyhedral Oligomeric Silsesquioxane Modification in Flexible Perovskite Resistive Random-Access Memories.","authors":"Ping Guan, Shuaixin Wu, Haoyan Meng, Zhenya Li, Mengru Liu, Yuping An, Yingliang Liu, Shengang Xu, Shaokui Cao","doi":"10.1021/acsami.4c09526","DOIUrl":null,"url":null,"abstract":"<p><p>Resistive random access memory (RRAM) has emerged as a promising candidate for next-generation storage technologies due to its simple structure, high running speed, excellent durability, high integration density, and low power consumption. This paper focuses on the application of organic-inorganic hybrid perovskite (OIHP) materials in RRAM by introducing an innovative three-dimensional POPA modification strategy, which is realized by binding octa-amine-polyhedral oligomeric silsesquioxanes (8NH<sub>2</sub>-POSS) onto the side chains of poly(acrylic acid) (PAA), thereby enhancing the material's resilience under elevated temperatures and humidity conditions. POPA cross-links with perovskite grains at crystalline boundaries through multiple -NH<sub>3</sub><sup>+</sup> and -C═O chemical anchoring sites on its branch chain, enhancing the grain adhesion, optimizing the film quality, and improving the cage structure distribution at the perovskite grain boundaries. The experimental results demonstrate that the POPA-modified OIHP RRAM exhibits an excellent resistance switching performance, with an optimal ON/OFF ratio of 5.0 × 10<sup>5</sup> and a data retention time of 10<sup>4</sup> s. After 150 days of environmental exposure, the ON/OFF ratio remains at 1.0 × 10<sup>5</sup>, indicating good stability. Furthermore, the POPA modification endows the perovskite film with considerable flexibility, maintaining stable resistance switching performance under various bending radii. This study provides a vital reference for flexible, high-performance, and long-lifespan perovskite memory devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"66239-66249"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c09526","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistive random access memory (RRAM) has emerged as a promising candidate for next-generation storage technologies due to its simple structure, high running speed, excellent durability, high integration density, and low power consumption. This paper focuses on the application of organic-inorganic hybrid perovskite (OIHP) materials in RRAM by introducing an innovative three-dimensional POPA modification strategy, which is realized by binding octa-amine-polyhedral oligomeric silsesquioxanes (8NH2-POSS) onto the side chains of poly(acrylic acid) (PAA), thereby enhancing the material's resilience under elevated temperatures and humidity conditions. POPA cross-links with perovskite grains at crystalline boundaries through multiple -NH3+ and -C═O chemical anchoring sites on its branch chain, enhancing the grain adhesion, optimizing the film quality, and improving the cage structure distribution at the perovskite grain boundaries. The experimental results demonstrate that the POPA-modified OIHP RRAM exhibits an excellent resistance switching performance, with an optimal ON/OFF ratio of 5.0 × 105 and a data retention time of 104 s. After 150 days of environmental exposure, the ON/OFF ratio remains at 1.0 × 105, indicating good stability. Furthermore, the POPA modification endows the perovskite film with considerable flexibility, maintaining stable resistance switching performance under various bending radii. This study provides a vital reference for flexible, high-performance, and long-lifespan perovskite memory devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.