Zhiwei Li, Jin Shang, Abdukeyum Abdurexit, Ruxangul Jamal, Tursun Abdiryim, Erman Su, Jin Wei
{"title":"Improving the performance of polylactic acid/polypropylene/cotton stalk fiber composites with epoxidized soybean oil as a high efficiency plasticizer.","authors":"Zhiwei Li, Jin Shang, Abdukeyum Abdurexit, Ruxangul Jamal, Tursun Abdiryim, Erman Su, Jin Wei","doi":"10.1016/j.ijbiomac.2024.137814","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactic acid (PLA) can serve as a biodegradable alternative to traditional petroleum-based plastics, but its poor impact resistance and high production costs limit its applications. In this study, different contents of epoxidized epoxy soybean oil (ESO) were added as plasticizer to melt blend with polylactic acid (PLA), polypropylene (PP) and cotton stalk fiber (CSF), examining its impact on the mechanical properties, thermal stability, microstructure, and crystallization behavior of the blends. The results indicated that ESO reacted with PLA and CSF to form branched polymers and microgels. With increasing ESO content, the blends exhibited increased initial thermal decomposition temperature, impact strength, and elongation at break, while stiffness, maximum decomposition rate, and crystallinity decreased. When the mass ratio of CSF to ESO was 2:1, the notch impact strength and elongation at break of PLA/PP/CSF/ESO blends were 1.63 times and 1.98 times higher than those of PLA/PP/CSF blends, respectively. Moreover, a reduction in surface grooves of CSF and formation of a gel layer were observed. Importantly, this study opens an effective new pathway for the utilization of waste natural fibers and the widespread application of biodegradable composite materials, contributing to environmental protection, resource conservation, and cost reduction.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137814"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137814","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polylactic acid (PLA) can serve as a biodegradable alternative to traditional petroleum-based plastics, but its poor impact resistance and high production costs limit its applications. In this study, different contents of epoxidized epoxy soybean oil (ESO) were added as plasticizer to melt blend with polylactic acid (PLA), polypropylene (PP) and cotton stalk fiber (CSF), examining its impact on the mechanical properties, thermal stability, microstructure, and crystallization behavior of the blends. The results indicated that ESO reacted with PLA and CSF to form branched polymers and microgels. With increasing ESO content, the blends exhibited increased initial thermal decomposition temperature, impact strength, and elongation at break, while stiffness, maximum decomposition rate, and crystallinity decreased. When the mass ratio of CSF to ESO was 2:1, the notch impact strength and elongation at break of PLA/PP/CSF/ESO blends were 1.63 times and 1.98 times higher than those of PLA/PP/CSF blends, respectively. Moreover, a reduction in surface grooves of CSF and formation of a gel layer were observed. Importantly, this study opens an effective new pathway for the utilization of waste natural fibers and the widespread application of biodegradable composite materials, contributing to environmental protection, resource conservation, and cost reduction.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.