Artificial intelligence bias in the prediction and detection of cardiovascular disease

Ariana Mihan, Ambarish Pandey, Harriette G. C. Van Spall
{"title":"Artificial intelligence bias in the prediction and detection of cardiovascular disease","authors":"Ariana Mihan, Ambarish Pandey, Harriette G. C. Van Spall","doi":"10.1038/s44325-024-00031-9","DOIUrl":null,"url":null,"abstract":"AI algorithms can identify those at risk of cardiovascular disease (CVD), allowing for early intervention to change the trajectory of disease. However, AI bias can arise from any step in the development, validation, and evaluation of algorithms. Biased algorithms can perform poorly in historically marginalized groups, amplifying healthcare inequities on the basis of age, sex or gender, race or ethnicity, and socioeconomic status. In this perspective, we discuss the sources and consequences of AI bias in CVD prediction or detection. We present an AI health equity framework and review bias mitigation strategies that can be adopted during the AI lifecycle.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00031-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00031-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AI algorithms can identify those at risk of cardiovascular disease (CVD), allowing for early intervention to change the trajectory of disease. However, AI bias can arise from any step in the development, validation, and evaluation of algorithms. Biased algorithms can perform poorly in historically marginalized groups, amplifying healthcare inequities on the basis of age, sex or gender, race or ethnicity, and socioeconomic status. In this perspective, we discuss the sources and consequences of AI bias in CVD prediction or detection. We present an AI health equity framework and review bias mitigation strategies that can be adopted during the AI lifecycle.

Abstract Image

人工智能在预测和检测心血管疾病方面的偏差
人工智能算法可以识别心血管疾病(CVD)的高危人群,从而进行早期干预,改变疾病的发展轨迹。然而,在算法的开发、验证和评估过程中,任何一步都可能产生人工智能偏差。有偏见的算法可能会在历史上被边缘化的群体中表现不佳,从而扩大基于年龄、性或性别、种族或民族以及社会经济地位的医疗保健不平等。在本视角中,我们讨论了人工智能在心血管疾病预测或检测中的偏差来源和后果。我们提出了一个人工智能健康公平框架,并回顾了可在人工智能生命周期中采用的减轻偏见策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信