Yihua Zhong, Sébastien Guillet, Christophe Corona, Adrien Favillier, Juan Antonio Ballesteros Cánovas, Frédéric Huneau, Jiazhi Qie, Markus Stoffel
{"title":"Mediterranean cyclones are a substantial cause of damaging floods in Corsica","authors":"Yihua Zhong, Sébastien Guillet, Christophe Corona, Adrien Favillier, Juan Antonio Ballesteros Cánovas, Frédéric Huneau, Jiazhi Qie, Markus Stoffel","doi":"10.1038/s43247-024-01836-3","DOIUrl":null,"url":null,"abstract":"Cyclones, whether tropical, extratropical, or of Mediterranean origin, play a crucial role in the Earth’s climate system, affecting environments and populations through strong winds, heavy rainfall, and flooding. While much research has focused on tropical and extratropical cyclones, Mediterranean cyclones have received less attention. These cyclones are generally weaker, smaller, and shorter-lived than their tropical or mid-latitude counterparts. However, recent events, such as Mediterranean cyclone Daniel in 2023, which caused severe flooding and thousands of deaths in Libya, underscore the major threat Mediterranean cyclones pose. In this study, we investigate the role of Mediterranean cyclones in triggering floods in Corsica, a region frequently affected by these storms. By analyzing cyclone tracks, streamflow data, and flood-related damage records from Corsica, we reveal a notable rise in river discharge linked to Mediterranean cyclones and show that they contributed to some of the most destructive floods recorded in Corsica between 1979 and 2020. An analysis of Mediterranean cyclone tracks and streamflow data from Corsica shows their precipitation increased river discharge and triggered destructive floods between 1979 and 2020, emphasizing the need for more studies across the Mediterranean.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01836-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01836-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclones, whether tropical, extratropical, or of Mediterranean origin, play a crucial role in the Earth’s climate system, affecting environments and populations through strong winds, heavy rainfall, and flooding. While much research has focused on tropical and extratropical cyclones, Mediterranean cyclones have received less attention. These cyclones are generally weaker, smaller, and shorter-lived than their tropical or mid-latitude counterparts. However, recent events, such as Mediterranean cyclone Daniel in 2023, which caused severe flooding and thousands of deaths in Libya, underscore the major threat Mediterranean cyclones pose. In this study, we investigate the role of Mediterranean cyclones in triggering floods in Corsica, a region frequently affected by these storms. By analyzing cyclone tracks, streamflow data, and flood-related damage records from Corsica, we reveal a notable rise in river discharge linked to Mediterranean cyclones and show that they contributed to some of the most destructive floods recorded in Corsica between 1979 and 2020. An analysis of Mediterranean cyclone tracks and streamflow data from Corsica shows their precipitation increased river discharge and triggered destructive floods between 1979 and 2020, emphasizing the need for more studies across the Mediterranean.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.