Effect of Powder Spreading Parameters on Laser Absorption Behavior and Processability of High-Strength Aluminum Alloy Fabricated by Laser Powder Bed Fusion

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shiwen Qi, Linxuan Li, Jingjia Sun, Biqi Yang, Bingke Song, Han Zhang, Dongdong Gu
{"title":"Effect of Powder Spreading Parameters on Laser Absorption Behavior and Processability of High-Strength Aluminum Alloy Fabricated by Laser Powder Bed Fusion","authors":"Shiwen Qi,&nbsp;Linxuan Li,&nbsp;Jingjia Sun,&nbsp;Biqi Yang,&nbsp;Bingke Song,&nbsp;Han Zhang,&nbsp;Dongdong Gu","doi":"10.1002/adem.202401588","DOIUrl":null,"url":null,"abstract":"<p>Laser powder bed fusion (LPBF) of rare-earth-modified high-strength aluminum alloys presents a novel approach for manufacturing complex components with enhanced structural performance, particularly in aerospace applications. This study fabricates Al–Mg–Sc–Zr specimens using various powder spreading parameters to explore their impact on laser processability. The investigation reveals that varying the powder layer thickness from 30 to 70 μm yields the smallest irradiation diameter of 135 μm at an optimal thickness of 50 μm, attributable to effective multiple reflections, high laser absorption rates, and stability. With an optimal laser power of 400 W, a scanning speed of 600 mm s<sup>−1</sup>, and a hatching spacing of 60 μm, the sample produced at 50 μm layer thickness achieves a relative density of 99.23%, a top surface roughness of 15.42 μm, and a refined grain size of 1.67 μm. Following aging at 325 °C for 4 h, this sample exhibits a tensile strength of 518 MPa and an elongation of 15.6%. The findings establish a theoretical basis for controlling the morphology and properties of high-strength aluminum alloys in laser additive manufacturing.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401588","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser powder bed fusion (LPBF) of rare-earth-modified high-strength aluminum alloys presents a novel approach for manufacturing complex components with enhanced structural performance, particularly in aerospace applications. This study fabricates Al–Mg–Sc–Zr specimens using various powder spreading parameters to explore their impact on laser processability. The investigation reveals that varying the powder layer thickness from 30 to 70 μm yields the smallest irradiation diameter of 135 μm at an optimal thickness of 50 μm, attributable to effective multiple reflections, high laser absorption rates, and stability. With an optimal laser power of 400 W, a scanning speed of 600 mm s−1, and a hatching spacing of 60 μm, the sample produced at 50 μm layer thickness achieves a relative density of 99.23%, a top surface roughness of 15.42 μm, and a refined grain size of 1.67 μm. Following aging at 325 °C for 4 h, this sample exhibits a tensile strength of 518 MPa and an elongation of 15.6%. The findings establish a theoretical basis for controlling the morphology and properties of high-strength aluminum alloys in laser additive manufacturing.

铺粉参数对激光粉末床熔融制造高强度铝合金的激光吸收行为和加工性能的影响
稀土改性高强度铝合金的激光粉末床熔融(LPBF)为制造结构性能更强的复杂部件,尤其是航空航天应用提供了一种新方法。本研究使用不同的粉末铺展参数制作了 Al-Mg-Sc-Zr 试样,以探索它们对激光加工性的影响。研究发现,在最佳厚度为 50 μm 时,粉末层厚度从 30 μm 到 70 μm 不等,可获得 135 μm 的最小照射直径,这归功于有效的多重反射、高激光吸收率和稳定性。在最佳激光功率为 400 W、扫描速度为 600 mm s-1 和孵化间距为 60 μm 的条件下,50 μm 层厚的样品相对密度达到 99.23%,顶面粗糙度为 15.42 μm,细化晶粒尺寸为 1.67 μm。在 325 °C 下老化 4 小时后,该样品的抗拉强度达到 518 兆帕,伸长率为 15.6%。这些发现为在激光增材制造中控制高强度铝合金的形态和性能奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信