On maximal hyperplane sections of the unit ball of \(l_p^n\) for \(p>2\)

IF 0.8 Q2 MATHEMATICS
Hermann König
{"title":"On maximal hyperplane sections of the unit ball of \\(l_p^n\\) for \\(p>2\\)","authors":"Hermann König","doi":"10.1007/s43036-024-00404-y","DOIUrl":null,"url":null,"abstract":"<div><p>The maximal hyperplane section of the <span>\\(l_\\infty ^n\\)</span>-ball, i.e. of the <i>n</i>-cube, is the one perpendicular to <span>\\(\\frac{1}{\\sqrt{2}} (1,1,0 ,\\ldots ,0)\\)</span>, as shown by Ball. Eskenazis, Nayar and Tkocz extended this result to the <span>\\(l_p^n\\)</span>-balls for very large <span>\\(p \\ge 10^{15}\\)</span>. By Oleszkiewicz, Ball’s result does not transfer to <span>\\(l_p^n\\)</span> for <span>\\(2&lt; p &lt; p_0 \\simeq 26.265\\)</span>. Then the hyperplane section perpendicular to the main diagonal yields a counterexample for large dimensions <i>n</i>. Suppose that <span>\\(p_0 \\le p &lt; \\infty \\)</span>. We show that the analogue of Ball’s result holds in <span>\\(l_p^n\\)</span>-balls for all hyperplanes with normal unit vectors <i>a</i>, if all coordinates of <i>a</i> have modulus <span>\\(\\le \\frac{1}{\\sqrt{2}}\\)</span> and <i>p</i> has distance <span>\\(\\ge 2^{-p}\\)</span> to the even integers. Under similar assumptions, we give a Gaussian upper bound for <span>\\(20&lt; p &lt; p_0\\)</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00404-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00404-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximal hyperplane section of the \(l_\infty ^n\)-ball, i.e. of the n-cube, is the one perpendicular to \(\frac{1}{\sqrt{2}} (1,1,0 ,\ldots ,0)\), as shown by Ball. Eskenazis, Nayar and Tkocz extended this result to the \(l_p^n\)-balls for very large \(p \ge 10^{15}\). By Oleszkiewicz, Ball’s result does not transfer to \(l_p^n\) for \(2< p < p_0 \simeq 26.265\). Then the hyperplane section perpendicular to the main diagonal yields a counterexample for large dimensions n. Suppose that \(p_0 \le p < \infty \). We show that the analogue of Ball’s result holds in \(l_p^n\)-balls for all hyperplanes with normal unit vectors a, if all coordinates of a have modulus \(\le \frac{1}{\sqrt{2}}\) and p has distance \(\ge 2^{-p}\) to the even integers. Under similar assumptions, we give a Gaussian upper bound for \(20< p < p_0\).

关于(p>2)的(l_p^n\)单位球的最大超平面部分
球(l_infty ^n\)的最大超平面截面,也就是n-立方体的最大超平面截面,是垂直于(frac{1}{sqrt{2}})的截面。(1,1,0 ,\ldots ,0)\), 如 Ball 所示。Eskenazis、Nayar和Tkocz将这一结果扩展到了非常大的(p大于10^{15})\(l_p^n\)-球。根据 Oleszkiewicz 的观点,对于 \(2< p < p_0 \simeq 26.265\) 而言,Ball 的结果并不能转移到 \(l_p^n\)。那么垂直于主对角线的超平面截面在大维度n上产生了一个反例。假设(p_0 \le p < \infty \)。我们证明,如果a的所有坐标都有\(\le \frac{1}{/sqrt{2}}\)模,并且p到偶数整数的距离为\(\ge 2^{-p}\),那么对于所有具有法向单位向量a的超平面来说,波尔结果的类似结果在\(l_p^n\)-波尔中成立。在类似的假设下,我们给出了 \(20< p < p_0\) 的高斯上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信