An improved multi-innovation error compensation-long-short-term memory network modeling method for high-precision state of charge estimation of lithium-ion batteries

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-09-20 DOI:10.1007/s11581-024-05831-8
Wu Qiqiao, Wang Shunli, Cao Wen, Gao Haiying, Carlos Fernandez, Josep M.Guerrero
{"title":"An improved multi-innovation error compensation-long-short-term memory network modeling method for high-precision state of charge estimation of lithium-ion batteries","authors":"Wu Qiqiao,&nbsp;Wang Shunli,&nbsp;Cao Wen,&nbsp;Gao Haiying,&nbsp;Carlos Fernandez,&nbsp;Josep M.Guerrero","doi":"10.1007/s11581-024-05831-8","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately estimating lithium-ion batteries’ state of charge (SOC) is a vital decision-making technique in battery management systems (BMS), essential to ensuring operational safety and prolonging battery lifespan. The multi-innovation error compensation-long-short-term memory (MEC-LSTM) network modeling method is proposed in this paper to enhance SOC estimation’s accuracy. The extended Kalman filter’s (EKF) limitations are addressed through the sliding window multi-innovation theory, which improves the ability to capture the dynamic relationships of nonlinear systems. To reduce the EKF’s error, the LSTM network is introduced for modeling, and the SOC error in the training results is used for error compensation, which solves the problems of slow convergence speed and erratic output of the LSTM network, leading to a notable enhancement in SOC estimation performance. The algorithm’s feasibility is confirmed through data analysis across complex working scenarios. Findings reveal that under the Hybrid Pulse Power Characterization Test (HPPC), Dynamic Stress Test (DST), and Beijing Bus Dynamic Stress Test (BBDST) working conditions, the average absolute error and the root-mean-square error are all within 2%. Validation results underscore the method’s high precision regarding estimating SOC for lithium-ion batteries, offering new ideas for SOC estimation techniques.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 11","pages":"6969 - 6984"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05831-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately estimating lithium-ion batteries’ state of charge (SOC) is a vital decision-making technique in battery management systems (BMS), essential to ensuring operational safety and prolonging battery lifespan. The multi-innovation error compensation-long-short-term memory (MEC-LSTM) network modeling method is proposed in this paper to enhance SOC estimation’s accuracy. The extended Kalman filter’s (EKF) limitations are addressed through the sliding window multi-innovation theory, which improves the ability to capture the dynamic relationships of nonlinear systems. To reduce the EKF’s error, the LSTM network is introduced for modeling, and the SOC error in the training results is used for error compensation, which solves the problems of slow convergence speed and erratic output of the LSTM network, leading to a notable enhancement in SOC estimation performance. The algorithm’s feasibility is confirmed through data analysis across complex working scenarios. Findings reveal that under the Hybrid Pulse Power Characterization Test (HPPC), Dynamic Stress Test (DST), and Beijing Bus Dynamic Stress Test (BBDST) working conditions, the average absolute error and the root-mean-square error are all within 2%. Validation results underscore the method’s high precision regarding estimating SOC for lithium-ion batteries, offering new ideas for SOC estimation techniques.

用于锂离子电池高精度电荷状态估算的改进型多创新误差补偿-长短期记忆网络建模方法
准确估计锂离子电池的充电状态(SOC)是电池管理系统(BMS)中的一项重要决策技术,对确保运行安全和延长电池寿命至关重要。本文提出了多创新误差补偿-长短期记忆(MEC-LSTM)网络建模方法,以提高 SOC 估算的准确性。通过滑动窗口多创新理论解决了扩展卡尔曼滤波器(EKF)的局限性,提高了捕捉非线性系统动态关系的能力。为了减少 EKF 的误差,引入了 LSTM 网络建模,并利用训练结果中的 SOC 误差进行误差补偿,解决了 LSTM 网络收敛速度慢和输出不稳定的问题,从而显著提高了 SOC 估计性能。通过对复杂工作场景的数据分析,证实了该算法的可行性。研究结果表明,在混合脉冲功率特性测试(HPPC)、动态应力测试(DST)和北京总线动态应力测试(BBDST)的工作条件下,平均绝对误差和均方根误差均在 2% 以内。验证结果表明,该方法对锂离子电池SOC的估算精度很高,为SOC估算技术提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信