Optimization of technology processes for enhanced CMOS-integrated 1T-1R RRAM device performance

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Keerthi Dorai Swamy Reddy, Eduardo Pérez, Andrea Baroni, Mamathamba Kalishettyhalli Mahadevaiah, Steffen Marschmeyer, Mirko Fraschke, Marco Lisker, Christian Wenger, Andreas Mai
{"title":"Optimization of technology processes for enhanced CMOS-integrated 1T-1R RRAM device performance","authors":"Keerthi Dorai Swamy Reddy,&nbsp;Eduardo Pérez,&nbsp;Andrea Baroni,&nbsp;Mamathamba Kalishettyhalli Mahadevaiah,&nbsp;Steffen Marschmeyer,&nbsp;Mirko Fraschke,&nbsp;Marco Lisker,&nbsp;Christian Wenger,&nbsp;Andreas Mai","doi":"10.1140/epjb/s10051-024-00821-1","DOIUrl":null,"url":null,"abstract":"<p>Implementing artificial synapses that emulate the synaptic behavior observed in the brain is one of the most critical requirements for neuromorphic computing. Resistive random-access memories (RRAM) have been proposed as a candidate for artificial synaptic devices. For this applicability, RRAM device performance depends on the technology used to fabricate the metal–insulator–metal (MIM) stack and the technology chosen for the selector device. To analyze these dependencies, the integrated RRAM devices in a 4k-bit array are studied on a 200 mm wafer scale in this work. The RRAM devices are integrated into two different CMOS transistor technologies of IHP, namely 250 nm and 130 nm and the devices are compared in terms of their pristine state current. The devices in 130 nm technology have shown lower number of high pristine state current devices per die in comparison to the 250 nm technology. For the 130 nm technology, the forming voltage is reduced due to the decrease of <span>\\(\\hbox {HfO}_2\\)</span> dielectric thickness from 8 nm to 5 nm. Additionally, 5% Al-doped 4 nm <span>\\(\\hbox {HfO}_2\\)</span> dielectric displayed a similar reduction in forming voltage and a lower variation in the values. Finally, the multi-level switching between the dielectric layers in 250 nm and 130 nm technologies are compared, where 130 nm showed a more significant number of conductance levels of seven compared to only four levels observed in 250 nm technology.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 11","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00821-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00821-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Implementing artificial synapses that emulate the synaptic behavior observed in the brain is one of the most critical requirements for neuromorphic computing. Resistive random-access memories (RRAM) have been proposed as a candidate for artificial synaptic devices. For this applicability, RRAM device performance depends on the technology used to fabricate the metal–insulator–metal (MIM) stack and the technology chosen for the selector device. To analyze these dependencies, the integrated RRAM devices in a 4k-bit array are studied on a 200 mm wafer scale in this work. The RRAM devices are integrated into two different CMOS transistor technologies of IHP, namely 250 nm and 130 nm and the devices are compared in terms of their pristine state current. The devices in 130 nm technology have shown lower number of high pristine state current devices per die in comparison to the 250 nm technology. For the 130 nm technology, the forming voltage is reduced due to the decrease of \(\hbox {HfO}_2\) dielectric thickness from 8 nm to 5 nm. Additionally, 5% Al-doped 4 nm \(\hbox {HfO}_2\) dielectric displayed a similar reduction in forming voltage and a lower variation in the values. Finally, the multi-level switching between the dielectric layers in 250 nm and 130 nm technologies are compared, where 130 nm showed a more significant number of conductance levels of seven compared to only four levels observed in 250 nm technology.

优化技术工艺,提高 CMOS 集成 1T-1R RRAM 器件性能
实现人工突触以模拟在大脑中观察到的突触行为,是神经形态计算最关键的要求之一。有人提出将电阻式随机存取存储器(RRAM)作为人工突触器件的候选器件。就其适用性而言,RRAM 器件的性能取决于用于制造金属-绝缘体-金属(MIM)堆栈的技术以及为选择器件选择的技术。为了分析这些相关性,本研究在 200 毫米晶圆规模上对 4 千位阵列中的集成 RRAM 器件进行了研究。RRAM 器件被集成到 IHP 两种不同的 CMOS 晶体管技术中,即 250 纳米和 130 纳米技术。与 250 纳米技术相比,130 纳米技术中的器件显示出较低的高原始状态电流器件数量。在 130 纳米技术中,由于电介质厚度从 8 纳米减小到 5 纳米,成型电压也随之降低。此外,掺杂 5%铝的 4 nm (\hbox {HfO}_2\)电介质也显示出类似的成形电压降低和较低的数值变化。最后,比较了 250 纳米和 130 纳米技术中介质层之间的多级切换,130 纳米技术显示出更多的七级电导,而 250 纳米技术中只有四级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信