{"title":"Reducing segregation in vibrated binary-sized granular mixtures by excessive small particle introduction","authors":"Fumiaki Nakai, Kiwamu Yoshii","doi":"10.1007/s10035-024-01476-6","DOIUrl":null,"url":null,"abstract":"<div><p>We numerically examine binary-sized granular mixtures confined between two parallel walls subjected to vertical vibration using the discrete element method. For a size ratio of 3 between large and small particles, we study the structure of large particles in moderately dense regimes where the combined two-dimensional packing fractions of both particle sizes exceed 1. When the fraction of small particles is small, segregation of the large particles occurs. In contrast, as the fraction of small particles increases, an effective repulsion between the large particles emerges over distances greater than the large particle diameter, suppressing their segregation. The emergence of reduction in segregation is confirmed for another size ratio, vibrational acceleration, system size, and for a case of bidisperse size distribution. Additionally, at the size ratio of 3, the effective repulsion induces a hexagonal phase of the large particles at packing fractions lower than in mono-component systems. This work will provide a fresh insight into granular physics, prompting further experimental and theoretical study.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>This article numerically investigates the structures of quasi-two-dimensional binary-sized granular mixtures under vibration, and finds that segregation is reduced with increasing packing fraction of small particles</p></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-024-01476-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01476-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We numerically examine binary-sized granular mixtures confined between two parallel walls subjected to vertical vibration using the discrete element method. For a size ratio of 3 between large and small particles, we study the structure of large particles in moderately dense regimes where the combined two-dimensional packing fractions of both particle sizes exceed 1. When the fraction of small particles is small, segregation of the large particles occurs. In contrast, as the fraction of small particles increases, an effective repulsion between the large particles emerges over distances greater than the large particle diameter, suppressing their segregation. The emergence of reduction in segregation is confirmed for another size ratio, vibrational acceleration, system size, and for a case of bidisperse size distribution. Additionally, at the size ratio of 3, the effective repulsion induces a hexagonal phase of the large particles at packing fractions lower than in mono-component systems. This work will provide a fresh insight into granular physics, prompting further experimental and theoretical study.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.