F-SiO2-embedded PLA-based superhydrophobic nanofiber membrane for highly efficient membrane distillation†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Yuqian He, Yanyan Ye, Mi Zhou, Linlin Yan, Yingjie Zhang, Enrico Drioli, Jun Ma, Yonggang Li and Xiquan Cheng
{"title":"F-SiO2-embedded PLA-based superhydrophobic nanofiber membrane for highly efficient membrane distillation†","authors":"Yuqian He, Yanyan Ye, Mi Zhou, Linlin Yan, Yingjie Zhang, Enrico Drioli, Jun Ma, Yonggang Li and Xiquan Cheng","doi":"10.1039/D4EW00611A","DOIUrl":null,"url":null,"abstract":"<p >Obtaining a superhydrophobic surface is key for constructing membrane distillation systems for desalination. Although perfluoroalkyl materials have been proven to be good candidates for membrane distillation, the lack of a friendly approach to treat waste perfluoroalkyl-based membranes has attracted significant concern. Herein, we propose a simple strategy for the preparation of superhydrophobic polylactic acid (PLA) nanofibre membranes. PLA nanofibres were coated with polydimethylsiloxane (PDMS) <em>via</em> coaxial electrostatic spinning technique, and 0.1% fluorine-modified silica (F-SiO<small><sub>2</sub></small>) nanoparticles were embedded in the nanofibres to form nanoscale projections, which can increase roughness. Results showed that the coating of the low-surface-energy material PDMS and the nanoscale projections of F-SiO<small><sub>2</sub></small> endowed the membrane with excellent superhydrophobicity. The presence of the biodegradable material PLA and only 0.1% fluorine-containing substances made the membrane environment friendly. In addition, a large-pore-size high-flux support layer could maximize transmembrane vapor transfer while a small-pore-size high-rejection selective layer could avoid brine wetting and exhibited excellent salt rejection. The flux of the membrane reached 6.87 L m<small><sup>−2</sup></small> h<small><sup>−1</sup></small> and rejection was higher than 99%. Therefore, the PPF-AS membrane, as a superhydrophobic membrane, has wide potential for application in the field of MD.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 12","pages":" 3137-3145"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00611a","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining a superhydrophobic surface is key for constructing membrane distillation systems for desalination. Although perfluoroalkyl materials have been proven to be good candidates for membrane distillation, the lack of a friendly approach to treat waste perfluoroalkyl-based membranes has attracted significant concern. Herein, we propose a simple strategy for the preparation of superhydrophobic polylactic acid (PLA) nanofibre membranes. PLA nanofibres were coated with polydimethylsiloxane (PDMS) via coaxial electrostatic spinning technique, and 0.1% fluorine-modified silica (F-SiO2) nanoparticles were embedded in the nanofibres to form nanoscale projections, which can increase roughness. Results showed that the coating of the low-surface-energy material PDMS and the nanoscale projections of F-SiO2 endowed the membrane with excellent superhydrophobicity. The presence of the biodegradable material PLA and only 0.1% fluorine-containing substances made the membrane environment friendly. In addition, a large-pore-size high-flux support layer could maximize transmembrane vapor transfer while a small-pore-size high-rejection selective layer could avoid brine wetting and exhibited excellent salt rejection. The flux of the membrane reached 6.87 L m−2 h−1 and rejection was higher than 99%. Therefore, the PPF-AS membrane, as a superhydrophobic membrane, has wide potential for application in the field of MD.

Abstract Image

嵌入 F-SiO2 的聚乳酸基超疏水纳米纤维膜用于高效膜蒸馏†。
获得超疏水表面是构建海水淡化膜蒸馏系统的关键。尽管全氟烷基材料已被证明是膜蒸馏的良好候选材料,但缺乏处理全氟烷基废膜的友好方法引起了人们的极大关注。在此,我们提出了一种制备超疏水聚乳酸(PLA)纳米纤维膜的简单策略。通过同轴静电纺丝技术在聚乳酸纳米纤维上涂覆聚二甲基硅氧烷(PDMS),并在纳米纤维中嵌入0.1%的氟改性二氧化硅(F-SiO2)纳米颗粒,形成纳米级凸起,从而增加粗糙度。结果表明,低表面能材料 PDMS 的涂层和 F-SiO2 的纳米级突起赋予了膜优异的超疏水性能。可生物降解材料聚乳酸(PLA)和仅 0.1% 的含氟物质的存在使该膜对环境友好。此外,大孔径的高通量支撑层可以最大限度地提高跨膜蒸汽传输,而小孔径的高排斥选择层则可以避免盐水润湿,并表现出优异的盐排斥性能。膜的通量达到了 6.87 L m-2 h-1,排斥率高于 99%。因此,PPF-AS 膜作为一种超疏水膜,在 MD 领域具有广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信