{"title":"The Problem of Spurious Emissions in 5G FR2 Phased Arrays, and a Solution Based on an Upmixer With Embedded LO Leakage Cancellation","authors":"Arun Paidimarri;Yujiro Tojo;Caglar Ozdag;Alberto Valdes-Garcia;Bodhisatwa Sadhu","doi":"10.1109/OJSSCS.2024.3487548","DOIUrl":null,"url":null,"abstract":"The wireless spectrum is a shared resource. Transmitters are expected to transmit only at their allotted frequency range and not at other frequencies. Transmitters are not perfect, and therefore, there are regulations that limit the transmitted energy outside the intended transmission frequencies. In this article, we provide an overview of the transmit mask requirements for 5G FR2, and the main factors that contribute to unwanted emissions. We then present some key radio architecture and circuit design considerations to help meet these emission requirements. Since the local oscillator (LO) leakage spur is one of the worst offenders, we also introduce an LO cancellation technique in the upmixer. We introduce two actuator circuits to control two independent LO signals at the upmixer output, one resulting from the upconversion from dc to LO, and another resulting from downconversion from 2 LO to LO. These two independent LO outputs then provide 2-D phase and amplitude control and can combine to create an equal and opposite LO signal at the output of the upmixer. The LO cancellation results in better than −57-dBc LO leakage across all candidate frequencies. Finally, we present extensive over-the-air (OTA) measurement validation of the LO suppression across frequencies, signal levels, and 64-element beam steering across a 60 beam steering range.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"193-211"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737135/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The wireless spectrum is a shared resource. Transmitters are expected to transmit only at their allotted frequency range and not at other frequencies. Transmitters are not perfect, and therefore, there are regulations that limit the transmitted energy outside the intended transmission frequencies. In this article, we provide an overview of the transmit mask requirements for 5G FR2, and the main factors that contribute to unwanted emissions. We then present some key radio architecture and circuit design considerations to help meet these emission requirements. Since the local oscillator (LO) leakage spur is one of the worst offenders, we also introduce an LO cancellation technique in the upmixer. We introduce two actuator circuits to control two independent LO signals at the upmixer output, one resulting from the upconversion from dc to LO, and another resulting from downconversion from 2 LO to LO. These two independent LO outputs then provide 2-D phase and amplitude control and can combine to create an equal and opposite LO signal at the output of the upmixer. The LO cancellation results in better than −57-dBc LO leakage across all candidate frequencies. Finally, we present extensive over-the-air (OTA) measurement validation of the LO suppression across frequencies, signal levels, and 64-element beam steering across a 60 beam steering range.
无线频谱是一种共享资源。发射机只能在其分配的频率范围内发射,而不能在其他频率上发射。发射机并非十全十美,因此有规定限制预定发射频率以外的发射能量。在本文中,我们将概述 5G FR2 的发射掩模要求,以及造成不必要发射的主要因素。然后,我们将介绍一些关键的无线电架构和电路设计注意事项,以帮助满足这些发射要求。由于本地振荡器 (LO) 漏电杂散是最严重的问题之一,我们还在上混频器中引入了 LO 消除技术。我们引入了两个执行器电路来控制上混频器输出端的两个独立 LO 信号,一个是从直流到 LO 的上变频信号,另一个是从 2 LO 到 LO 的下变频信号。这两个独立的 LO 输出可提供二维相位和振幅控制,并可在上混频器输出端组合成一个相等且相反的 LO 信号。LO 取消后,所有候选频率的 LO 泄漏均优于-57-dBc。最后,我们对不同频率、信号电平和 60 波束转向范围内的 64 元波束转向的 LO 抑制进行了广泛的空中 (OTA) 测量验证。