Designing rotational motion of charge densities on plasmonic nanostructures excited by circularly polarized light

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Naoki Ichiji, Takuya Ishida, Ikki Morichika, Daigo Oue, Tetsu Tatsuma, Satoshi Ashihara
{"title":"Designing rotational motion of charge densities on plasmonic nanostructures excited by circularly polarized light","authors":"Naoki Ichiji, Takuya Ishida, Ikki Morichika, Daigo Oue, Tetsu Tatsuma, Satoshi Ashihara","doi":"10.1515/nanoph-2024-0433","DOIUrl":null,"url":null,"abstract":"Rotational motion of charges in plasmonic nanostructures plays an important role in transferring angular momentum between light and matter on the nanometer scale. Although sophisticated control of rotational charge motion has been achieved using spatially structured light, its extension to simultaneous excitation of the same charge motion in multiple nanostructures is not straightforward. In this study, we perform model calculations to show that spatially homogeneous circularly polarized (CP) light can excite rotational charge motions with a high degrees of freedom by exploiting the rotational symmetry of the plasmonic structure and that of the plasmon mode. Finite-difference time-domain simulations demonstrate selective excitation of rotational charge motion for both isolated nanoplates and periodic array structures, showing that complex charge rotations can be manipulated by plane CP waves in a wide range of plasmonic structures.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"34 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0433","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rotational motion of charges in plasmonic nanostructures plays an important role in transferring angular momentum between light and matter on the nanometer scale. Although sophisticated control of rotational charge motion has been achieved using spatially structured light, its extension to simultaneous excitation of the same charge motion in multiple nanostructures is not straightforward. In this study, we perform model calculations to show that spatially homogeneous circularly polarized (CP) light can excite rotational charge motions with a high degrees of freedom by exploiting the rotational symmetry of the plasmonic structure and that of the plasmon mode. Finite-difference time-domain simulations demonstrate selective excitation of rotational charge motion for both isolated nanoplates and periodic array structures, showing that complex charge rotations can be manipulated by plane CP waves in a wide range of plasmonic structures.
设计由圆偏振光激发的等离子纳米结构上电荷密度的旋转运动
质子纳米结构中的电荷旋转运动在纳米尺度的光与物质之间传递角动量方面发挥着重要作用。虽然利用空间结构光已经实现了对旋转电荷运动的精密控制,但将其扩展到在多个纳米结构中同时激发相同的电荷运动并不简单。在本研究中,我们通过模型计算表明,空间均匀圆偏振(CP)光可以利用等离子结构的旋转对称性和等离子模式的旋转对称性,激发具有高自由度的旋转电荷运动。有限差分时域模拟证明了孤立纳米板和周期性阵列结构对旋转电荷运动的选择性激发,表明平面 CP 波可以在多种质子结构中操纵复杂的电荷旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信