Vijin Kizhake Veetil, Junyeob Song, Pradeep N. Namboodiri, Nikki Ebadollahi, Ashish Chanana, Aaron M. Katzenmeyer, Christian Pederson, Joshua M. Pomeroy, Jeffrey Chiles, Jeffrey Shainline, Kartik Srinivasan, Marcelo Davanco, Matthew Pelton
{"title":"Enhanced zero-phonon line emission from an ensemble of W centers in circular and bowtie Bragg grating cavities","authors":"Vijin Kizhake Veetil, Junyeob Song, Pradeep N. Namboodiri, Nikki Ebadollahi, Ashish Chanana, Aaron M. Katzenmeyer, Christian Pederson, Joshua M. Pomeroy, Jeffrey Chiles, Jeffrey Shainline, Kartik Srinivasan, Marcelo Davanco, Matthew Pelton","doi":"10.1515/nanoph-2024-0485","DOIUrl":null,"url":null,"abstract":"Color centers in silicon have recently gained considerable attention as single-photon sources and as spin qubit-photon interfaces. However, one of the major bottlenecks to the application of silicon color centers is their low overall brightness due to a relatively slow emission rate and poor light extraction from silicon. Here, we increase the photon collection efficiency from an ensemble of a particular kind of color center, known as W centers, by embedding them in circular Bragg grating cavities resonant with their zero-phonon-line emission. We observe a ≈5-fold enhancement in the photon collection efficiency (the fraction of photons extracted from the sample and coupled into a single-mode fiber), corresponding to an estimated ≈11-fold enhancement in the photon extraction efficiency (the fraction of photons collected by the first lens above the sample). For these cavities, we observe lifetime reduction by a factor of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>≈</m:mo> <m:mn>1.3</m:mn> </m:math> <jats:tex-math>${\\approx} 1.3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2024-0485_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>. For W centers in resonant bowtie-shaped cavities, we observed a ≈3-fold enhancement in the photon collection efficiency, corresponding to a ≈6-fold enhancement in the photon extraction efficiency, and observed a lifetime reduction factor of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>≈</m:mo> <m:mn>1.1</m:mn> </m:math> <jats:tex-math>${\\approx} 1.1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2024-0485_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula>. The bowtie cavities thus preserve photon collection efficiency and Purcell enhancement comparable to circular cavities while providing the potential for utilizing in-plane excitation methods to develop a compact on-chip light source.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"19 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0485","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Color centers in silicon have recently gained considerable attention as single-photon sources and as spin qubit-photon interfaces. However, one of the major bottlenecks to the application of silicon color centers is their low overall brightness due to a relatively slow emission rate and poor light extraction from silicon. Here, we increase the photon collection efficiency from an ensemble of a particular kind of color center, known as W centers, by embedding them in circular Bragg grating cavities resonant with their zero-phonon-line emission. We observe a ≈5-fold enhancement in the photon collection efficiency (the fraction of photons extracted from the sample and coupled into a single-mode fiber), corresponding to an estimated ≈11-fold enhancement in the photon extraction efficiency (the fraction of photons collected by the first lens above the sample). For these cavities, we observe lifetime reduction by a factor of ≈1.3${\approx} 1.3$. For W centers in resonant bowtie-shaped cavities, we observed a ≈3-fold enhancement in the photon collection efficiency, corresponding to a ≈6-fold enhancement in the photon extraction efficiency, and observed a lifetime reduction factor of ≈1.1${\approx} 1.1$. The bowtie cavities thus preserve photon collection efficiency and Purcell enhancement comparable to circular cavities while providing the potential for utilizing in-plane excitation methods to develop a compact on-chip light source.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.