Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiangyue Liao, Yangjie Li, Bin Xie, Min Xie, Xin Tan, Qiaoji Zheng, Lin Li, Xin-Xin Zhao, Zhen-Yi Gu, Sean C. Smith, Jingxin Zhao, Dunmin Lin, Xing-Long Wu
{"title":"Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction","authors":"Xiangyue Liao, Yangjie Li, Bin Xie, Min Xie, Xin Tan, Qiaoji Zheng, Lin Li, Xin-Xin Zhao, Zhen-Yi Gu, Sean C. Smith, Jingxin Zhao, Dunmin Lin, Xing-Long Wu","doi":"10.1016/j.ensm.2024.103920","DOIUrl":null,"url":null,"abstract":"Poor migration dynamics and low energy density are the main challenges of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> as a cathode material for sodium ion batteries. Herein, a nanoscale polyhedron high-entropy cathode of Na<sub>3</sub>V<sub>1.47</sub>(Fe,Al,Ga,Mg,Mn)<sub>0.5</sub>Mo<sub>0.01</sub>Nb<sub>0.02</sub>(PO<sub>4</sub>)<sub>3</sub> is designed to modify the crystal structure and enhance the electrons transfer. Distributed nanoparticles improve the electrolyte interface, promoting rapid migration of Na<sup>+</sup>, while the abundant specific surface area offers extra sites for Na<sup>+</sup> storage. High entropy and multi-metal synergistic effects increase the number of occupied Na(1) and Na(2) sites, maintaining multiple redox couples (V<sup>3+/4+/5+</sup> and Mn<sup>2+/3+/4+</sup>) and obtaining a reversible 2.18-electron reaction. Consequently, the high-entropy cathode of Na<sub>3</sub>V<sub>1.47</sub>(Fe,Al,Ga,Mg,Mn)<sub>0.5</sub>Mo<sub>0.01</sub>Nb<sub>0.02</sub>(PO<sub>4</sub>)<sub>3</sub> delivers excellent specific capacity of 130.2 mAh g<sup>−1</sup> at 0.5 C, achieving high energy density of 448.3 Wh kg<sup>−1</sup>, and exhibiting the capacity retention of 95% after 500 cycles at 5 C and 86.5% after 1000 cycles at 15 C, respectively. <em>In situ</em> XRD, ex <em>situ</em> XAS and DFT calculations reveal the influence of structural evolution, valence changes, and high-entropy effects on chemical kinetics. This study provides a guideline for designing advanced polyanionic phosphate cathode materials for sodium ion batteries.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"60 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103920","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poor migration dynamics and low energy density are the main challenges of Na3V2(PO4)3 as a cathode material for sodium ion batteries. Herein, a nanoscale polyhedron high-entropy cathode of Na3V1.47(Fe,Al,Ga,Mg,Mn)0.5Mo0.01Nb0.02(PO4)3 is designed to modify the crystal structure and enhance the electrons transfer. Distributed nanoparticles improve the electrolyte interface, promoting rapid migration of Na+, while the abundant specific surface area offers extra sites for Na+ storage. High entropy and multi-metal synergistic effects increase the number of occupied Na(1) and Na(2) sites, maintaining multiple redox couples (V3+/4+/5+ and Mn2+/3+/4+) and obtaining a reversible 2.18-electron reaction. Consequently, the high-entropy cathode of Na3V1.47(Fe,Al,Ga,Mg,Mn)0.5Mo0.01Nb0.02(PO4)3 delivers excellent specific capacity of 130.2 mAh g−1 at 0.5 C, achieving high energy density of 448.3 Wh kg−1, and exhibiting the capacity retention of 95% after 500 cycles at 5 C and 86.5% after 1000 cycles at 15 C, respectively. In situ XRD, ex situ XAS and DFT calculations reveal the influence of structural evolution, valence changes, and high-entropy effects on chemical kinetics. This study provides a guideline for designing advanced polyanionic phosphate cathode materials for sodium ion batteries.

Abstract Image

开启先进的钠存储性能:高熵通过可逆多电子反应调节晶体学位点
Na3V2(PO4)3作为钠离子电池阴极材料面临的主要挑战是迁移动力学差和能量密度低。本文设计了一种纳米级多面体高熵阴极 Na3V1.47(Fe,Al,Ga,Mg,Mn)0.5Mo0.01Nb0.02(PO4)3,以改变晶体结构并增强电子转移。分布式纳米粒子改善了电解质界面,促进了 Na+ 的快速迁移,而丰富的比表面积则为 Na+ 的储存提供了额外的场所。高熵和多金属协同效应增加了所占据的 Na(1) 和 Na(2) 位点的数量,维持了多个氧化还原偶(V3+/4+/5+ 和 Mn2+/3+/4+),并获得了可逆的 2.18 电子反应。因此,Na3V1.47(Fe,Al,Ga,Mg,Mn)0.5Mo0.01Nb0.02(PO4)3 的高熵阴极在 0.5 C 时的比容量为 130.2 mAh g-1,能量密度高达 448.3 Wh kg-1,在 5 C 下循环 500 次后的容量保持率为 95%,在 15 C 下循环 1000 次后的容量保持率为 86.5%。原位 XRD、原位 XAS 和 DFT 计算揭示了结构演化、价态变化和高熵效应对化学动力学的影响。这项研究为设计用于钠离子电池的先进聚阴离子磷酸盐阴极材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信