Yufeng Li, Zhenwei Li, Nan Wang, Yajun Zha, Ke Zheng, Yuebing Xu, Bing Liu, Xiaohao Liu
{"title":"Strong activity-based volcano-type relationship for dry reforming of methane through modulating Ni-CeO2 interaction over Ni/CeO2-SiO2 catalysts","authors":"Yufeng Li, Zhenwei Li, Nan Wang, Yajun Zha, Ke Zheng, Yuebing Xu, Bing Liu, Xiaohao Liu","doi":"10.1016/j.checat.2024.101189","DOIUrl":null,"url":null,"abstract":"The dry reforming of methane (DRM) reaction holds significance for efficient conversion of CH<sub>4</sub> and CO<sub>2</sub> into syngas for the subsequent production of premium fuels and high-value chemicals. However, catalyst deactivation is easily caused by carbon deposition over Ni-based catalysts. Here, we investigated the effects of ultrasmall CeO<sub>2</sub> nano-islands on the DRM reaction and found a strong volcano-type relationship between CeO<sub>2</sub> content and reaction activity over Ni/CeO<sub>2</sub>-SiO<sub>2</sub> catalysts. A suitable CeO<sub>2</sub> amount can only slightly suppress CH<sub>4</sub> dissociation but largely promote carbon species elimination. More importantly, the presence of these CeO<sub>2</sub> nano-islands positively affected the types and location of coke species by “carbon-phobic effect” and thus alleviated coverage of Ni active sites. As a result, a higher TOF<sub>CH4</sub> was obtained by an increase of about 82% and a continuous 2,000-h run almost without any side reaction, and deactivation was achieved along with CO<sub>2</sub> and CH<sub>4</sub> conversions at about 96% and 92%, respectively.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"74 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dry reforming of methane (DRM) reaction holds significance for efficient conversion of CH4 and CO2 into syngas for the subsequent production of premium fuels and high-value chemicals. However, catalyst deactivation is easily caused by carbon deposition over Ni-based catalysts. Here, we investigated the effects of ultrasmall CeO2 nano-islands on the DRM reaction and found a strong volcano-type relationship between CeO2 content and reaction activity over Ni/CeO2-SiO2 catalysts. A suitable CeO2 amount can only slightly suppress CH4 dissociation but largely promote carbon species elimination. More importantly, the presence of these CeO2 nano-islands positively affected the types and location of coke species by “carbon-phobic effect” and thus alleviated coverage of Ni active sites. As a result, a higher TOFCH4 was obtained by an increase of about 82% and a continuous 2,000-h run almost without any side reaction, and deactivation was achieved along with CO2 and CH4 conversions at about 96% and 92%, respectively.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.