Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone
Lejing Li, Lingling Wang, Guangri Jia, Liangpang Xu, Jiating Chen, Zhuofeng Hu, Jimmy C. Yu
{"title":"Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone","authors":"Lejing Li, Lingling Wang, Guangri Jia, Liangpang Xu, Jiating Chen, Zhuofeng Hu, Jimmy C. Yu","doi":"10.1021/acsnano.4c10975","DOIUrl":null,"url":null,"abstract":"The conversion of biomass-based feedstocks into high-value platform compounds remains a fundamental but challenging topic. Studies on such transformations are sparse due to the complex nature of biomass and limited upgrading strategies. Photocatalytic aerobic oxidation is a promising pathway for making pharmaceutical precursors from biomass-derived chemicals. In this study, we demonstrate the transformation of furfuryl alcohol into dihydropyranone acetyl by using a molybdenum-incorporated triphenylbenzene–dimethoxyterephthaldehyde–covalent organic framework <i>via</i> a singlet oxygen (<sup>1</sup>O<sub>2</sub>)-mediated photocatalytic Achmatowicz reaction. The COF-Mo photocatalyst exhibits exceptional selectivity up to 98% in producing hydroxy-2H-pyran-3(6H)-one, a complex synthone crucial for synthesizing anti-AIDS drugs. Mo incorporation enhances the generation rate by 3.9 times, primarily due to the synergistic effect between Mo active sites and the COF backbone. More importantly, Mo clusters create a superfast charge tunnel for photogenerated electron transfer from COF to adsorbed O<sub>2</sub>. The metallic state and hexavalent of Mo facilitate the generation of superoxide anions and <sup>1</sup>O<sub>2</sub>, respectively, facilitating photocatalytic reactions.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10975","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of biomass-based feedstocks into high-value platform compounds remains a fundamental but challenging topic. Studies on such transformations are sparse due to the complex nature of biomass and limited upgrading strategies. Photocatalytic aerobic oxidation is a promising pathway for making pharmaceutical precursors from biomass-derived chemicals. In this study, we demonstrate the transformation of furfuryl alcohol into dihydropyranone acetyl by using a molybdenum-incorporated triphenylbenzene–dimethoxyterephthaldehyde–covalent organic framework via a singlet oxygen (1O2)-mediated photocatalytic Achmatowicz reaction. The COF-Mo photocatalyst exhibits exceptional selectivity up to 98% in producing hydroxy-2H-pyran-3(6H)-one, a complex synthone crucial for synthesizing anti-AIDS drugs. Mo incorporation enhances the generation rate by 3.9 times, primarily due to the synergistic effect between Mo active sites and the COF backbone. More importantly, Mo clusters create a superfast charge tunnel for photogenerated electron transfer from COF to adsorbed O2. The metallic state and hexavalent of Mo facilitate the generation of superoxide anions and 1O2, respectively, facilitating photocatalytic reactions.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.